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After this lecture, students understand the theory of graphs and 
trees
Learning Objectives

Formally define a graph or tree

Can distinguish directed and graphs, trees, binary search trees

Name basic properties of graphs and tress

Know traversal algorithms (i.e. DFS & BFS, and Pre-, Post- and Inorder)

Know how to store graphs and trees computationally

Heard of self-balancing AVL-Trees
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In Business Information System Engineering, graphs are at the 
core of many applications.
Graph-Examples

Process Models

Maps

Social Networks

Neural Networks



Graph theory – formal representation
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Devise a walk through the city that would cross each of 

those bridges once and only once. 

By specifying the logical task unambiguously, solutions 

involving either

• reaching an island or mainland bank other than via one 

of the bridges, or

• accessing any bridge without crossing to its other end

are prohibited.

In 1736, Euler (supposedly) developed the first formally defined 
graph to solve a riddle.
The Seven Bridges of Königsberg
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Definition: 𝑮 = 𝑽, 𝑬 where:

V is the set of all vertices in a graph

• 𝑣 ∈ 𝑉 is one vertex of a graph

• for each vertex we draw one node

E is the set of all edges in a graph

• e ∈ E is one edge of a graph

• e = u, v , e is a relation between two vertices

• u is the start vertex

• v is the end/destination vertex

• For each edge, we draw an arrow from the start 

to the end node

The formal definition of a directed graph consists of all vertices 
and all edges in a graph.
Directed Graphs

A
𝐺 = 𝑉, ∅ ,𝑤𝑖𝑡ℎ
𝑉 = 𝐴, 𝐵, 𝐶
𝐸 = ∅
∅ is an empty set

B C

𝐺 = 𝑉, 𝐸 with:
𝑉 = {𝐴, 𝐵, 𝐶}, 
𝐸 = { 𝐴, 𝐵 , (𝐴, 𝐶)}

A

B C
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If a graph: 𝑮 = 𝑽,𝑬 has a symmetric set of edges (E) we speak of undirected graphs:

While defining undirected graphs, we do not need to repeat 
opposite edges.
Undirected Graphs

𝐺 = 𝑉, 𝐸 with:
𝑉 = {𝐴, 𝐵, 𝐶}, 
𝐸 = { 𝑨,𝑩 , 𝑨, 𝑪 , 𝑩, 𝑨 , (𝑪, 𝑨)}

A

B C

A

B C

Symmetry of E:

• ∀ (𝑒 𝑢, 𝑣 ∈ 𝐸 ∃ 𝑒 𝑣, 𝑢 ∈ 𝐸)
• For all edges from u to v in E, there is also an edge from v to u.

We leave out arrows and simply use lines in undirected graphs instead
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• Multigraphs allow parallel edges

• Edges are parallel, if they start at the same and end at the same vertices

• Example: Public transport between Nuremberg and Erlangen

• 𝐺 = ({𝑁𝑏𝑔, 𝐸𝑟𝑙}, 𝐸{ 𝑁𝑏𝑔, 𝐸𝑟𝑙 , 𝑁𝑏𝑔, 𝐸𝑟𝑙 , (𝑁𝑏𝑔, 𝐸𝑟𝑙)})

Parallel edges are only allowed in Multigraphs.

Multigraphs

Nbg Erl
Train

S-Bahn

Bus
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• Edges can be weighted with values like costs, time, or anything you find useful.

• In the previous example we could either travel by Bus, Train or S-Bahn. Each of these means of transportation takes 

a different time. Now, we see three ways to travel from Nürnberg to Erlangen, where a way either takes 25, 15, or 10 

minutes.

Weighted edges can add information to graphs (e.g. distance in 
minutes).
Weighted Edges

In formal notation: 

G (V = {Nbg, Erl}, 

E = {(Nbg, Erl, 10), 

(Nbg, Erl, 15), (Nbg, 

Erl, 25)}

Nbg Erl
10

15

25



12/19/2022Graphs & Trees | Prof. Dr. Martin Matzner 10

• What‘s the definition of the graph Euler used in Königsberg?

LM = Landmass

I     = Island 

• Is the graph directed?

• Is it a multi or a simple graph?

Solution

Undirected Multigraph 𝐺 = 𝑉, 𝐸

𝑉 = 𝐿𝑀1, 𝐿𝑀2, 𝐼1, 𝐼2

𝐸 = { 𝐿𝑀1, 𝐼1 , 𝐿𝑀1, 𝐼1 , 𝐿𝑀1, 𝐼2 ,

𝐼1, 𝐼2 , 𝐼1, 𝐿𝑀2 , 𝐼1, 𝐿𝑀2 , (𝐼2, 𝐿𝑀2)}

The first graph proved: It is not possible to devise a walk to every 
landmass and island which crosses every bridge exactly once.
Exemplary Definition of a Graph

I1

LM1

I2

LM2
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A (finite) Walk:

• is sequence of vertices leading to a vertex sequence.

A (finite) Trail:

• Is a walk where all edges are distinct

A (finite) Path:

• Is a walk where all edges and vertices are distinct

To travel through a graph, graph theorists use the terms: walk, 
trail, and paths.
Graph Travelling

Walk:

A-C-D-C

A

B C

D

A

B C

D

Trail:

B-A-D-C-A

Path:

B-A-D

A

B C

D



Computational representations of graphs
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Formal definition: 

• Let 𝐺 𝑉, 𝐸 be a graph with 𝑉 = 𝑣1, … , 𝑣𝑛 .

• Then the 𝑛 × 𝑛 Matrix:

𝐴𝐺 = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖,𝑗 = 1 𝑖𝑓 𝑣𝑖, 𝑣𝑗 ∈ 𝐸

𝑎𝑖,𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is called adjacency matrix of Graph 𝐺

Note:

• For weighted edges in a graph, 

we use the weight instead of the 1 to indicate

the weight of an edge.

Graphs can be stored computationally in adjacency matrices.

Adjacency matrix

1 2

3 4

0 1 0 1

0 0 1 0

1 0 0 1

0 0 0 0

Example
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(Simplified) Explanation:

• Imagine every node as a row and a column in the matrix:

If you look at the column of a node, you find all the incoming edges

If you look at the row of a node, you find all the outgoing edges

Adjacency matrices answer the question – is there an edge from 
this vertex to the other vertex – with  either Yes (1) or No (0). 
Adjacency matrix

Vertices 1 2 3 4
Can I 

come

here

from

n?

1 No Yes No Yes

2 No No Yes No

3 Yes No No Yes

4 No No No No

Can I go to n from here?

1 2

3 4
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(Simplified) Explanation:

• Now, since we know vertex 1 is in row 0 and column 0, vertex 2 is in row 1 and column 1. We can omit the vertices 

numbers in the resulting matrix.

• After that we encode a “Yes” as an answer to the previous questions to 1 (or the respective weight) and a “No” to 0. 

Simply convert the previous answers into a two-dimensional array to 
convert the matrix into its computational representation of a graph

Adjacency matrix

0 1 0 1

0 0 1 0

1 0 0 1

0 0 0 0

Vertices 1 2 3 4

1 No Yes No Yes

2 No No Yes No

3 Yes No No Yes

4 No No No No



12/19/2022Graphs & Trees | Prof. Dr. Martin Matzner 16

Let’s recreate a graph from an adjacency matrix

Adjacency Matrix to Graph

Draw the graph from the 

following matrix!

0 0 0 1 1

1 0 0 0 1

0 1 0 0 1

0 1 1 0 0

0 1 0 0 0
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If you draw a graph that you do not know, put all vertices in a 
circle.
Adjacency Matrix to Graph

Draw the graph from the following matrix!

0 0 0 1 1

1 0 0 0 1

0 1 0 0 1

0 1 1 0 0

0 1 0 0 0

1

2

3
4

5≡
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The placement of a node in a drawn image from a graph does not 
affect its semantics.
Graph Drawing

0 1 0 1

0 0 1 0

1 0 0 1

0 0 0 0

1 2

3 4

1

2

3

4≡ =

If we draw a graph from an adjacency matrix, the result might look different: 

Even though the graphs (1) and (2) look differently, they are the same. The 

only difference is the placement of the vertices.

1 2
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Another way to store graphs computationally is an adjacency list.

Adjacency List

0

1

2

3

4

5

6

7

1 | 4 3 | 2

7 | 1

3 | 5

4 | 9 2 | 1 7 | 2

6 | 2

5 | 4

2 | 3

0 | 9

1

2

3 4

0

5

6

7

4

2

1

3

5

9

1

2

2

9

4
Example

cf:  https://visualgo.net/en/graphds

Target 

Vertex

Edge

Weight

https://visualgo.net/en/graphds
https://visualgo.net/en/graphds
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Let’s think about how we might implement an adjacency list in a 
computer.
Definition

How could we implement an 

adjacency list?
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The implementation of adjacency lists relies on hash tables, 
arrays, or object orientation.
Definition

Hash tables 

(Dictionaries)
Arrays with indices Object-oriented

Three popular ways to implement an adjacency list are:

How could we implement an adjacency list?
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class GraphNode:

def __init__(self):

self.neighbors = []

self.name = “”

def add_neighbor(self, node):

…

class Graph:

def __init__(self):

self.nodes = []

self.edges = {} # adj. list

def add_node(self, node):

…

An implementation of a graph could, for instance, store all edges 
and nodes in a graph.
OOP graph

A graph node knows of its neighbors and stores its ID.

A graph comprises a list of nodes and all edges per source 

node in a dictionary. 



Graph traversal – DFS and BFS
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DFS: Find nodes in a graph by walking down all paths 

from a node

- Pseudo Code:

DFS (node):

Set up stack and visited list

Add node to stack

While stack not empty:

Set node to stack pop

Add node to visited

For neighbor in node.neighbors:

If neighbor not visited:

push neighbor on stack

Depth-First Search (DFS) and Breadth-First Search (BFS) are the 
two strategies to traverse a graph.
BFS and DFS

DFS: Find nodes in a graph by visiting all neighbors from 

a node

- Pseudo Code:

BFS (node):

Set up queue and visited list

Add node to queue

While queue not empty:

Set node to queue pop

Add node to visited

For neighbor in node.neighbors:

If neighbor not visited:

push neighbor into queue
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DFS (node):

Set up stack and visited list

Add node to stack

While stack not empty:

Set node to stack pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor on stack

In DFS, an algorithm follows every path as long as it can. If it
reaches a dead end, it tries the next path.
Depth-first search (DFS)

1 2

3 4

Node = 1

Visited = [ ]

Stack = [ 1 ]
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DFS (node):

Set up stack and visited list

Add node to stack

While stack not empty:

Set node to stack pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor on stack

In DFS, an algorithm follows every path as long as it can. If it
reaches a dead end, it tries the next path.
Depth-first search (DFS) in detail

1 2

3 4

Node = 1

Visited = [ 1 ]

Stack = [ 2, 4 ]
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DFS (node):

Set up stack and visited list

Add node to stack

While stack not empty:

Set node to stack pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor on stack

In DFS, an algorithm follows every path as long as it can. If it
reaches a dead end, it tries the next path.
Depth-first search (DFS) in detail

1 2

3 4

Node = 4

Visited = [ 1, 4 ]

Stack = [ 2 ]
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DFS (node):

Set up stack and visited list

Add node to stack

While stack not empty:

Set node to stack pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor on stack

In DFS, an algorithm follows every path as long as it can. If it
reaches a dead end, it tries the next path.
Depth-first search (DFS) in detail

1 2

3 4

Node = 2

Visited = [ 1, 4, 2 ]

Stack = [ 3 ]
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DFS (node):

Set up stack and visited list

Add node to stack

While stack not empty:

Set node to stack pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor on stack

In DFS, an algorithm follows every path as long as it can. If it
reaches a dead end, it tries the next path.
Depth-first search (DFS) in detail

1 2

3 4

Node = 3

Visited = [ 1, 4, 2, 3 ]

Stack = [  ]

Stack is empty, 

therefore we can end 

the search
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BFS (node):

Set up queue and visited list

Add node to queue

While queue not empty:

Set node to queue pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor into queue

In BFS, an algorithm first visits all neighbors of a vertex and does 
not follow a specific path.
Breadth-first search (BFS)

1 2

3 4

Node = 1

Visited = [ ]

Queue = [ 1 ]
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BFS (node):

Set up queue and visited list

Add node to queue

While queue not empty:

Set node to queue pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor into queue

In BFS, an algorithm first visits all neighbors of a vertex and does 
not follow a specific path.
Breadth-first search (BFS)

1 2

3 4

Node = 1

Visited = [ 1 ]

Queue = [ 2, 4 ]
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BFS (node):

Set up queue and visited list

Add node to queue

While queue not empty:

Set node to queue pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor into queue

In BFS, an algorithm first visits all neighbors of a vertex and does 
not follow a specific path.
Breadth-first search (BFS)

1 2

3 4

Node = 2

Visited = [ 1, 2 ]

Queue = [ 4, 3 ]
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BFS (node):

Set up queue and visited list

Add node to queue

While queue not empty:

Set node to queue pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor into queue

In BFS, an algorithm first visits all neighbors of a vertex and does 
not follow a specific path.
Breadth-first search (BFS)

1 2

3 4

Node = 4

Visited = [ 1, 2, 4 ]

Queue = [ 3 ]



19/12/2022Graphs & Trees | Prof. Dr. Martin Matzner 34

BFS (node):

Set up queue and visited list

Add node to queue

While queue not empty:

Set node to queue pop

Add node to visited

For neighbor in node.targets:

If neighbor not visited:

push neighbor into queue

In BFS, an algorithm first visits all neighbors of a vertex and does 
not follow a specific path.
Breadth-first search (BFS)

1 2

3 4

Node = 3

Visited = [ 1, 2, 4, 3 ]

Queue = [  ]

Queue is empty, 

therefore we can end 

the search



Tree data structures
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GraphList Tree
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Abstract data structures that rely on linking elements can be 
distinguished by their number of predecessors and successors
Linking Data Structures

Each element has at 

most 1 predecessor 

and 1 successor

Each element has at 

most 1 predecessor 

and 0 to n successors

Each element has 0 to 

n predecessors and 0 

to n successors
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• For example, a phone book:

• Due to simplicity the 

“phone book” – tree 

is limited to some

letters

In a tree representation, we can infer hierarchies into data as in 
tries or binary trees.
Representation of hierarchical information

Book

A DCB

A A B A B A

…

Each name contains several letters. Each level of the tree represents one 

letter. 



12/19/2022Graphs & Trees | Prof. Dr. Martin Matzner 38

When we search a name in the previous trie-like tree, we only 
need two steps to locate the element.
Searching a person with the name CB

Book

C

CA CB

With one search step, we limit the phone book search space 

from 26 (A - Z) nodes to 1 (C).
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Tries speed up finding, inserting and deleting elements to O(k), 
where k is the key length of the stored data.
Searching a person with the name CB

Book

C

CB

In the next step we found the name “CB”



Tree theory
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Trees are connected acyclic graphs.

Tree Definition

6

4

5 7 92

8

Is this graph a tree?

6

4

5 7

9
2

8
Iff (if and only if) there is exactly one path 

between any two vertices, it is a tree.

Path: 

A walk between two vertices where every 

vertex and edge is distinct. 
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Node:

• Nodes are what we called vertices in graph theory.

Root

• The only vertex without any predecessors, („Beginning of the tree“)

inner Node 

• Node with a predecessor and n successor(s)

Leaf

• Node with a predecessor and 0 successor(s)

Nodes are vertices in graph theory. They can be the root, an inner 
node or a leaf in a tree.
Nodes

Root

LeafNodeNode

Leaf Leaf Leaf Leaf
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Parent

• Direct predecessor

Ancestor

• Predecessor of any 

predecessor of the node

Child

• Direct successor

Grand child

• Successor in the latter of the tree

Siblings

• Nodes with the same Parent

A node is in different relationships with other nodes.

Relationships

Root

NodeNode

Leaf Leaf Leaf Leaf

Ancestor

Siblings

Parent

Neighbors of Node

Child

Grandchild
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Node properties

• Height

The number of edges to walk from the node to a leaf.

• Depth

The number of edges to walk 

from a node to the root.

Tree properties

• Height

The height of the root node

• Width

The longest path between two leafs

There are several properties to describe a tree or a node. The 
most prominent ones are height and depth.
Describing trees

Root

NodeNode

Leaf Leaf Leaf Leaf

Height: 2

Depth: 0

Height: 1

Depth: 1

Height: 0

Depth: 2

Node 

properties

Tree 

properties

Height: 2

Width: 4
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Full

• Every node has either n or 0 children

(left) Complete

• A complete binary tree is filled at least down to the leaf 

level.

Balanced

• Height balanced: 

The difference of heights between a node’s subtrees is 

< Δh (for us ∓1)

• Fully balanced:

The difference of nodes in each subtree is < Δ𝑛 (for us 

∓1)

Properties specific to trees are whether they are full, complete, 
balanced or perfect.
Tree properties

Perfect

• Complete, Full and completely balanced

A perfect tree
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Let’s classify the following binary search tree.

Example Classification

Classify the following tree?
50

30 70

9060

65

10

55
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The tree is only height balanced.

Example Classification

Classify the following tree?

50

30 70

9060

65

10

55

Neither full nor complete; but, 

height balanced.



Binary trees and binary search trees
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Mathematically, a binary tree, can be defined as the triple

• 𝑇𝐵 = 𝑇𝐿 , 𝑣𝑖 , 𝑇𝑅

• Where T is a tree

• Where v is the root of the ith subtree

A binary tree is always a binary tree when the two children are 

binary trees.

− Note: A binary tree can be empty

To implement binary trees, we can use structs with pointers from 𝑣𝑖
to the childs, arrays, or object-oriented programming

Binary trees are defined recursively: If both children of a tree 
node are binary trees, then it is also a binary tree.
Binary Tree Definition

Left child 𝑇𝐿 Right child 𝑇𝑅

𝑣0

𝑣𝑖

𝑇𝐿 𝑇𝑅Pointers
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The most concise implementation of a binary tree is in a normal 
array.
Binary Tree implementation

Two-dimensional array

A B C D E

0 1 2 3 4

1 3 -1 -1 -1

2 4 -1 -1 -1 A

B C

D E

One-dimensional array

A B C D E

0 1 2 3 4

node𝑖 = array[i]
left child𝑖 = array 2i + 1
right child𝑖= array[2i + 2]
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We already got to know one famous divide and conquer 

approach, the binary search algorithm.

In an average binary search tree, we eliminate half of 

the search space in one operation

The binary search tree is a data structure that inherently displays 
the binary search algorithm.
Binary Search Tree

• In a binary search tree, the element are inserted 

using operators (e.g., ‘<’)

• Every element in a binary search tree is unique

• Every right child is larger than the node and every left 

child is lower than the node

5

3 7

2 4 6 8

<

< >

>

><

Read from left to right
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Finding an element in a binary search tree is O(log n). 

Finding in Binary Search Trees

5

3 7

2 4 6 8

Go left because 4 < 5

Go right because 4 > 3

Find the 4 in the tree

Go right because 9 > 5

Find the 9 in the tree

return true; return false;

Go right because 9 > 7
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Let’s construct a binary search tree.

Creating a binary search tree

Create a binary search tree 

with the following values!

50, 30, 70, 60, 10, 20, 90, 40 
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• The first element we add is always the root.

Binary Search Trees

Creating a binary search tree

50

30 70

90604010

20

Let’s create a binary search tree with the following values

50, 30, 70, 60, 10, 20, 90, 40 

50 30 70 60 10 20 90 40
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The mere creation of a binary search tree from a list by using only 
the operator can cause a problem.
Problem: Creating Binary Search Trees

In Lecture 5 – Data 

structures you heard of a 

problem when creating BSTs 

… do you remember it?
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When degenerating a binary search tree, we receive a linked list. 

Creating binary search trees

What might cause problems when creating binary search trees?

Create the following binary tree and 

insert the elements in the order they 

come:

13, 17, 19, 29, 40

13 17 19 29 40

We lost all efficiency of  

binary search trees by 

inserting sorted elements

Degenerate 

every parent has 

only one child ~

Linked List
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Average runtime of searching:

𝑂(log 𝑛)

O(n)

We like balanced binary trees better than unbalanced ones.

Balanced vs. not Balanced

13 17 19 29 40

19

29

40

17

13

Find 29 in both data structures

1 hop

3 hops
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We need to distinguish three cases: 

i. Deleting a leaf

Just delete the node

ii. Deleting a node with one child

Swap child to own position

iii. Deleting a node with two children

The deletion of a leaf just removes the leaf. The deletion of an inner 
node with one child replaces the node to be deleted with its child.

Deleting Nodes

50

30 70

90604010

iii 20
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iii. Deleting a node with two children

Two strategies:

1. Find minimum of right subtree and replace with the deleted node

2. Find maximum of left subtree and replace with the deleted node

There are two strategies for deleting 
a node with two children.
Deleting Nodes

50

30 70

6040

iii

20

1.

50

30 70

6040

iii

20

2.
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Binary Tree Visualizer

Inorder-traversal traverses a binary search tree in sorted order.

Traversal

Preorder: “5 3 1 2 4 7 6 9 8”

1.Print value

2.Go to left child

3.Go to right child

Inorder: “1 2 3 4 5 6 7 8 9”

1.Go to left child

2.Print value

3.Go to right child

Postorder: “2 1 4 3 6 8 9 7 5”

1.Go to left child

2.Go to right child

3.Print value

5

3 7

9641

2 8

http://btv.melezinek.cz/binary-search-tree.html
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There is a tree data structure which can automatically balance a 
tree.
Motivation

If balanced trees are so much better than unbalanced trees, why 

don’t we get self-balancing trees?

Ok then, let’s take a look at self-balancing 

trees.



Adelson Velsky and Landis (AVL-) trees
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• A self-balancing tree data structure

• Searching, Inserting and Deleting is 𝑂(log 𝑛) in the 

average and worst case

• Idea:

Define a structural invariant. Every time one updates 

(delete or inserts) the tree check the invariant, and if 

required enforce it.

• In natural words: an AVL Tree’s structural invariant 

says that the tree must be height balanced.

AVL-Trees define a structural invariant that expresses that a tree 
must be height balanced.
Adelson-Velsky and Landis (AVL) Trees
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The Invariant that AVL trees enforce is as follows:

Let 𝑣 be any node in a binary search tree and ℎ(𝑣) be the function to determine its height.

• The height of both children 𝑣. 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑 and 𝑣. 𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑 differ by 1 at most.

• A non-existing node always has a height difference of -1.

An AVL tree rebalances by specific rotation rules to achieve a tree 
that is always at least height balanced.
AVL Definition

Structural Invariant (AVL):
ℎ 𝑣. 𝑙𝑒𝑓𝑡 − ℎ 𝑣. 𝑟𝑖𝑔ℎ𝑡 ≤ 1

Whenever an update violates the AVL 

invariant, the tree “rebalances”.
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AVL Trees reevaluate their structural invariant after every update, 
i.e., addition or deletion of a node.
AVL Trees

Perform 
Update 

Check 
structural 
condition

Rebalance

5

Add 5

3

4

3

4

Initial Binary 
Search Tree

Δℎ = 2 > 1

5

3

4

ℎ(4) = 1

ℎ 𝑛𝑢𝑙𝑙 = −1

Rebalance

53

4
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After this lecture, students understand the theory of graphs and 
trees
Learning Objectives

Formally define a graph or tree

Can distinguish directed and graphs, trees, binary search trees

Name basic properties of graphs and tress

Know traversal algorithms (i.e. DFS & BFS, and Pre-, Post- and Inorder)

Know how to store graphs and trees computationally

Heard of self-balancing AVL-Trees
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