
Password: QPSYH

Please participate in the evaluation via QR Code or via the
following Link: https://www.eva.fau.de
Evaluation of Introduction to Computer Science

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 2

Discounted price:

• 300€ per Participant, who is enrolled at FAU

Registration and further information:

• https://www.is.rw.fau.eu/teaching/courses/ts410/

The course is a block seminar, which takes place at the

beginning of every semester, before the lectures start.

In summer, the course takes place in the first two

weeks of April.

Contact(s):

• Pepe Bellin (pepe.bellin@fau.de)

• Annina Liessmann (annina.liessmann@fau.de)

Every semester our chair offers a training for the SAP certificate
TS410 – Integrated Business Processes in SAP S4/Hana.
TS410 - Training

https://www.is.rw.fau.eu/teaching/courses/ts410/
mailto:pepe.bellin@fau.de
mailto:annina.liessmann@fau.de

Week 7 –

Object-oriented programming

Introduction to Computer Science | WS22/23

Chair of Digital Industrial Service Systems | Prof. Dr. Martin Matzner & Prof. Dr. Andreas Harth

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 4

After this lecture, students understand the foundational
paradigms of object orientation and inheritance.
Learning objectives

Understand object-oriented thinking

Know the core concepts of object-oriented programming

Effectively use classes and objects to structure your code

Write more reusable code

Be aware of the advantages object-oriented programming brings with it

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 5

Agenda

Object-oriented programming in Python02

Abstraction and Information Hiding03

Inheritance04

Programming Paradigms01

Polymorphism05

Programming Paradigms

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 6

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 7

Software- and application development mostly relies on
imperative programming.
Major programming paradigms

Declarative Logic

Event-driven

Functional

Imperative
Procedural

Object-oriented

Only found at edge-

cases for IntroCS

C / C++

Python

J
a
v
a
S

c
ri
p
t

Major focus of

IntroCS

R

Java / C#

Most programming

languages support

multiple paradigms.

Programmers

decide what

to compute.

Programmers

decide how to

compute.

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 8

Procedural programming

• Sequential programming

• Related to a human’s perception

• Among the “fastest” customizable programming languages

• Only little additional software needed

Procedural programming lets programmers define a program’s
sequential procedure.
Procedural programming

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 9

Procedural programming

• Sequential programming

• Related to a human’s perception

• Among the “fastest” programming languages.

• Procedures accomplish tasks

Object-oriented programming facilitates a logic that claims:
everything is an object.
Comparison of procedural and object-oriented programming

Object-oriented programming

• Functionality is bound to objects

• A different way of perceiving an environment

• Everything is an object

• Objects accomplish tasks

void daily_routine(Person *p) class Person(object):

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 10

• bundle data and functionality into objects that operate with well-defined

interfaces

• divide-and-conquer development

– implement and test behavior of each object separately

– increased modularity reduces complexity

• objects make it easy to reuse code

‒ many Python modules define objects

‒ each object has a separate environment (no collision on function names)

‒ inheritance allows subclasses to use, redefine or extend a selected subset

of a superclass’ behavior

Simplicity, as in “close to real-world perceptions”, is a key
advantage of OOP
Fundamentals of OOP

Object-oriented programming in Python

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 11

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 12

Arrays in C

//rectangles

float width[3];

float height[3];

Data Structures in C

typedef struct {

float width;

float height;

} rectangle;

You have used arrays and structs in C, and lists and dictionaries
in Python to bundle data.
Bundling Data

Lists / Dictionary in Python

rectangle = [width, height];

rectangle = {“width”: width, “height”: height}

Objects

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 13

• Python supports many kinds of data

• An object is an instance of a class

Objects bundle data and functionality in a single scope.

Objects

instance class / type

5 int

“Hello“ str

a.append() function

4.1495 float

… …

State <-> Attributes

• Use <object>. to access any attribute of an object

• (Data) attributes are variables which define an object

Behavior <-> Methods

• Use <object>.method to call methods of an object

• Methods are procedural attributes that facilitate the

interaction with an object

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 14

Every object

• has a type that is a certain class

• Use type(obj) to identify the class of an object

• can create new objects of some type

• can manipulate objects

• can destroy objects

Everything in Python is an object. Objects consist of data
attributes and methods.
Python objects

Objects are a data abstraction that captures…

An internal representation

• Through data attributes

An interface for interacting with the object

• Through methods (object-related functions)

name = Bert

species = dog

color = brown

make_noise()

play_with()

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 15

OOP allows us to illustrate real-life through grouping of objects of the same type

Object-oriented programmers group similar objects into classes.

Classes

animal_2

Cat

…

black

animal_3

…

animal_1

…

Animal

name

species

color

make_noise()

play_with()

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 16

Classes are like blueprints for objects, so they abstract multiple
different objects to a higher level.
Abstraction

Animal class

name = Lucy

species = cat

color = black

make_noise()

play_with()

name = Bert

species = dog

color = brown

make_noise()

play_with()

GroupingBlueprint

Animal

name

species

color

make_noise()

play_with()

name = Birdie

species = bird

color = yellow

make_noise()

play_with()

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 17

Creating the class involves

• Defining a class name

• Defining a constructor

• Defining class-scope variables

Since classes are blueprints for objects, it’s important distinguish
between creating and using classes.
Defining vs. using the class

Classes support two kinds of operations

• Instantiation to create instances (a specific object) of

a class

• Attribute references use the class name and dot-

notation to access a class-scope variable

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 18

• class starts a class definition

• Code inside class is indented, similarly to def

• Use pass to create an “empty“ class

• Use ClassName() to create an object of class

ClassName

You can define your own classes, or types, using the keyworld
class.
Defining a class

>>>

>>>

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 19

• Use constructor, which is a special method called __init__ to initialize data attributes

• What are attributes?

− Data that belongs to the class

− Think of data as other objects that make up the class

− For example, an Animal can have a name, is of a species and has a color.

As with structs, we can attach data to objects within their related
class definitions in the constructor: self.data = data
Class anatomy - Data attributes

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 20

Why do we add data to an object in a special method “Constructor”?

• The Constructor (__init__() method) is called every time an object is created, so an object of the class will

always have executed the constructor, before it can be used by another object.

To instantiate an object, we call the constructor every time a new
instance is created: ClassName()
Class anatomy – Constructor

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 21

• Data attributes of an instance are called instance variables

Calling the constructor creates one instance of a class.
Parameters can be added as data attributes: ClassName(params)
Class Anatomy – Data attributes and Constructor

Assign newly created objects to variables,

otherwise you might lose access to an object.

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 22

What are methods?

• Procedural attributes

• Functions that only work with the specified class

• Allow us to interact with the object

• Python always passes the object as the first argument

− By convention self is used as the 1st argument in method definition

• The “.” operator is used to access any attribute

− Data attribute of an object

− Method of an object

Procedural programming defines functions to create reusable
functionality, while OOP uses methods to achieve the same.
Class anatomy – methods

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 23

• We already know that methods are those functions that only work within specified classes – so let‘s bring it all

together:

animal_2.play_with(“a rag“)

• We can use a certain method by using the object‘s name (animal_2) to specify the object we want to call the

method on, followed by the method (play_with) and (if required) parameters (“a rag“)

Python methods are defined like functions, but they require self
as their first parameter: def method(self, params)
Class Anatomy – Methods

>>>

>>>

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 24

• self is a placeholder for a particular object used in class definition

• Don’t provide argument for self, Python takes care of that automatically

• Python will take care of self when method is called from an object:

The keyword self in methods’ parameters within class definitions
refers to the instance of a class, which executes the method.
Class anatomy – self in methods

animal_1.play_with(“a ball“)
is interpreted as

Animal.play_with(animal_1, “a ball“)

>>>

>>>

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 25

• Methods are function definitions within a class, but

they include self as the first argument

• Define data attributes of a class by assigning them in

the constructor __init__ method

• Refer to attributes of an instance of a class via

self.attr

Classes consist of their definition, data attributes which are
defined in a constructor, and methods for binding functionality.
Class anatomy – Wrapping Up

If you do not require any reference to self within a method, then you are not exploiting object-oriented

programming capabilities. In such cases, you can create a function outside of a class instead of a method

without breaking functionality.

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 26

• Encapsulation lies at the very heart of OOP

• With encapsulation we mean bundling together

data attributes and methods to operate on them:

Encapsulation refers to binding functionality and data to a single
object.
Encapsulation

>>>
>>>

With encapsulation, programmers simplify reusing their code.

All interfaces to class functionality (methods) are defined.

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 27

• Classes are great in bundling data attributes and

methods

• This allows us to combine objects with other objects

• For example, if we think of an animal shelter, we

want to have a possibility to drop off animals and

mediate animals to a new home

Even objects can be encapsulated within objects to increase
usefulness of single objects.
Object Encapsulation

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 28

Let’s continue with the example from the slide before and do
some work with our Animal Shelter.
Animal shelter example

Output:

Program:

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 29

1. Initialize an object and its attributes in __init__()

2. Naming

− UpperCase for class, lower_case for methods and attributes

3. Keep self as self

4. Use docstrings

Use CamelCase for classes, lower_case for methods and
attributes, and keep self as self.
Best practices

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 30

• Uninformative print representation by default

• Define show method for specific class

• You choose what it does!

Like structs in procedural programming, objects can not be
printed automatically.
Printing Objects

Output:

Printing an object out of the box looks like printing a pointer in C.

When printing a struct Person, the following line will provide informative output:

printf(“Name: %s, Number: %i\n”, p->name, p->number)

In Python, printing an object requires printing the desired data attributes.

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 31

• Instead of using print, we access our newly

defined show method by using dot notation

• This allows us to customize the print

representation of objects, though being more

informative

To print an object in a more informative way, defining a method
can help.
Printing objects – Custom method

Output:

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 32

Objects are instances of a class and a program can check
whether an object is an instance of a particular class.
Classes and instances

Let’s first ask for the type of an object instance

• print(animal_2)

− return of the __str__ method

• print(type(animal_2))

− the type of object animal_2 is a class Animal

This is due to

• print(Animal)

− an Animal is a class

• print(type(Animal))

− an Animal class is a type of object

Use isinstance() to check if an object is an Animal

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 33

• Classes are blueprints of objects.

• Whereas instances are objects that are created

based on a class’s constructor.

• Constructor: def __init__(self[, …])

• Encapsulation refers to bundling data into objects

that share

− Data attributes and

− Procedural attributes (methods) that operate on

those common attributes

• Creating our own classes of objects on top of

Python’s basic classes

• Self in method definitions refers to a specific

instance of a class

Instantiating an object from a class using a constructor creates
an object which encapsulates data and procedural attributes.
Fundamentals of OOP

Abstraction and Information Hiding

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 34

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 35

Instantiation allows us to create a new object (animal_1) of the class (Animal)

Dot notation is used to access attributes (data and methods) however it is better to use getter and setter methods

Using “.”-notation to access data attributes of an object can
result in unexpected usage and is a security issue.
Instances and dot notation

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 36

• In OOP getter and setter methods are used to access and edit data outside of classes:

Providing getters and setters in your classes increases security,
as you can preprocess in- and output of your objects.
Getter and setter methods

• Getter methods:

• You can abstract attribute names, if you want to

prevent users, to change or know them.

• You can aggregate information. For instance, you

could calculate a Persons age from his or her date

of birth.

• Setter methods:

• You can check, whether the correct data type is

passed to your method.

• You can check semantic correctness.

• For instance: an ID is an Integer and cannot be a

negative number.

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 37

Data hiding refers to access-management in-between different objects during runtime. For reasons of security, safety

and robustness, programmers may hide critical methods and attributes from external objects.

In general, there are three access modifiers for attributes/properties:

• Private: indicated by a double underscore self.__attribute

− Private attributes cannot be accessed from outside a class.

• Protected: Indicated by a single underscore self._attribute

− Protected attributes should not be accessed from outside a class, other than sub-classes

− Note that Python only sets this as convention, so it’s more an indicator

• Public: Indicated by the absence of an underscore: self.attribute

− Public attributes are always accessible

Private, Protected and Public are the access modifiers in Python

Information hiding in OOP

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 38

• It’s best practice to use getter and setter methods to

modify and retrieve data attributes.

• This way you can help other programmers to use your

objects correctly

• Most OOP languages provide three access modifiers.

• Make attributes private that are critical to functionality

• Make attributes protected, that external users should

handle with care

• Make attributes public, that are required for

interaction.

OOP allows for data abstraction by using access modifiers and
getter and setter methods.
Abstraction and Information hiding

Inheritance

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 39

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 40

Parent class (superclass)

Child class (subclass)

▪ Inherits all data and behaviors of parent class

▪ (Can) Add further attributes

▪ (Can) Add further methods

▪ (Can) Override existing attributes / methods

In real-life we often think of objects belonging together and being
organized in hierarchies.
Reusability through hierarchies

Animal

Dog BirdCat

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 41

• As you already know, types list and str each have len functions that mean the same thing

Inheritance – OOP

• Remember that classes are used to implement data abstractions

• Inheritance allows you to create a type hierarchy in which each type inherits types from above it in the hierarchy

• The class object is always at the top of hierarchy

− in Python everything that exists at runtime is an object

− Because Animal inherits all attributes of objects, programs can bind a variable to an Animal, append an Animal to a list, etc.

Inheritance provides a convenient mechanism for building groups
of related abstractions.
Common properties amongst different types

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 42

Everything is an object in Python, so Animal inherits all

the properties of objects

But what does that mean?

• class object implements basic operations in Python,

like binding variables, etc.

Inheritance provides a convenient mechanism for building groups
of related abstractions.
Implementation of parent class

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 43

Parent class is Animal

• Call Animal constructor

• Call Animal’s constructor method

• Add new data attribute age to Dog which is a string

containing the dog’s age

Override Animal’s make_noise method

Through the concept of inheritance, we can easily reuse the
attributes of a parent class.
Implementation of children classes

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 44

Typical use case for super

• In a class hierarchy with single inheritance, super can

be used to refer to parent class without naming it

explicitly

• This makes the code more maintainable

• self is not needed when working with super()

• super().__init__(name, “dog”, color) equals

to Animal.__init__(self, name, “dog”, color)

You might have noticed that we called the constructor of our
superclass by using super().__init__(…).
super.__init__()

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 45

Add new attributes

• Dog added the instance variables age and dogID

• The instance variable self.dogID is initialized

using a class variable tag, that belongs to the

class Dog rather than to instances of the class

Override attributes of superclass

• For example, Dog has overridden __init__ and

make_noise

In addition to what subclasses inherit they can add new attributes
and override attributes of superclasses.
Extended functionalities of subclasses and class variables

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 46

Dog.__init__ first invokes Animal.__init__ by using

super().__init__ to initialize the inherited

instance variable self.name, self.species and

self.color

Then self.dogID is initialized, an instance variable

that instances of Dog have but instances of Animal

do not

− The instance variable self.dogID is initialized

using a class variable, tag, that belongs to the

class Dog, rather than to instances of the class

− When an instance of Dog is created, a new

instance of tag is not created

− This allows __init__ to ensure that each

instance of Dog has a unique ID

Inheritance is one of the key-concepts which make OOP so powerful.
So, let’s go through the process step-by-step once again.

Recap Inheritance OOP

Polymorphism

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 47

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 48

Polymorphism is a very important concept, not only in OOP, but generally in programming

• It refers to the use of a single type entity (method, operator or object) to represent different types in different

scenarios

• It makes programming easier and more intuitive

Polymorphism in OOP is a powerful way to create programs and
is often facilitated via inheritance.
Polymorphism in Python

len() number of items

length of string

number of keys

str

list

dict

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 49

Dynamic typing

• Python utilizes dynamic typing (duck typing)

• No need to declare variable types before runtime

• We can use that to our advantage in regards of

flexibility, reusability and recyclability

Dynamic typing and operator overloading are two approaches of
polymorphism in Python
Dynamic typing and operator overloading

Operator overloading

• Python objects allow us to extend the meaning of

default operators, e.g., ‘+’ or ‘<’ by using

__add__ and __lt__ respectively

• For example, ‘+’ operator is used to add two

numbers as well as to concatenate strings, which is

achievable because ‘+’ operator is overloaded by

the int class and the str class

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 50

Method overloading

• In Python, Method overloading does not work as in

other languages like Java or C++/#

• However, we can set parameters to default values:

Python facilitates method overloading with default parameters
and method overriding via inheritance.
Method overloading and method overriding

Method overriding

• Method overriding is an ability of every OOP

programming language that allows subclasses to

override methods of the according superclasses

(Inheritance)

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 51

Output:

• def __str__(self): name of a special method

• str(self.width) : __str__ must return a string

To print out an Animal, we can override an object’s special
method __str__ method.
Lecture Add-On: Method overriding – __str__ method

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 52

• Like with print, we can override those operators with special methods

• Define them with double scores __specialmethod__ before and after

…and others which can be found here

Just like __str__ there are further special methods related to all
objects, for instance to compare different object with each other.
Lecture Add-On: How to override operators.

https://docs.python.org/3/reference/datamodel.html#basic-customization

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 53

• Bundle together objects that share

− Common data attributes and

− Procedural attributes (methods) that operate on those

common attributes

• Create our own classes of objects on top of Python’s

basic classes

• Use abstraction to make distinction between how to

implement an object vs how to use an object

• Build layers of object abstractions that inherit behavior

from other classes of objects

• Operators, methods and objects can play different

roles, i.e., they can be polymorphs

The four core concepts of object-oriented programming are
encapsulation, abstraction, inheritance, and polymorphism
Fundamentals of OOP

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 54

Simplicity:

OOP models real-world objects in programs; thereby,

the structure of a program becomes more natural and

intuitive.

Object-oriented programming bears the advantages: simplicity,
encapsulation, reusability and modularity.
Advantages of OOP – SERM

Encapsulation:

By nature, objects comprise both the data and

procedures to take actions. Thus, if you have an

implemented class, knowledge about its internal

functionality is not necessary.

Reusability:

Classes can often be reused in different contexts or

programs, since their functionality is independent

from a program itself.

Modularity:

Polymorphism, encapsulation and composition

make it simple to change a program. Everything you

change is bound to the functionality of the class you

modified.

Recap OOP

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 55

• Encapsulation

means bounding

data & functionality

to objects

These are the take aways from today

Recap OOP

Recap OOP

Attributes → States

(dot-notation)

Methods → Behavior

(dot-notation & arguments)

• Classes facilitate code reusability

can be seen as blueprints for

objects sharing the same

attributes and behaviors

• Subclasses can use, redefine or

extend enherited data or behavior

• Dinstinguish between

Class creation and

using a class

• If there is a python class for dogs,

then self is one particular instance

of dogs, say Bert.

• __init__(self,…) stands for initialize

and creates instances

• super().__init__() goes without the

self and calls the superior class

• Use type() to

get the class

of an object

12/12/2022IntroCS - OOP | Institute of Information Systems (WIN) | Sebastian Dunzer 56

After this lecture, students understand the foundational
paradigms of object orientation and inheritance.
Learning Objectives (Revisited)

Understand object-oriented thinking

Know the core concepts of object-oriented programming

Effectively use classes and objects to structure your code

Write more reusable code

Be aware of the advantages object-oriented programming brings with it

Prof. Dr. Martin Matzner
Friedrich-Alexander-Universität Erlangen-Nürnberg

School of Business, Economics and Society | WiSo

wiso-is-kontakt@fau.de

twitter.com/ismama

www.is.rw.fau.eu

Chair of Digital Industrial Service Systems

	Lehrstuhl Diss
	Folie 1: Please participate in the evaluation via QR Code or via the following Link: https://www.eva.fau.de
	Folie 2: Every semester our chair offers a training for the SAP certificate TS410 – Integrated Business Processes in SAP S4/Hana.
	Folie 3: Week 7 – Object-oriented programming
	Folie 4: After this lecture, students understand the foundational paradigms of object orientation and inheritance.
	Folie 5: Agenda
	Folie 6: Programming Paradigms
	Folie 7: Software- and application development mostly relies on imperative programming.
	Folie 8: Procedural programming lets programmers define a program’s sequential procedure.
	Folie 9: Object-oriented programming facilitates a logic that claims: everything is an object.
	Folie 10: Simplicity, as in “close to real-world perceptions”, is a key advantage of OOP
	Folie 11: Object-oriented programming in Python
	Folie 12: You have used arrays and structs in C, and lists and dictionaries in Python to bundle data.
	Folie 13: Objects bundle data and functionality in a single scope.
	Folie 14: Everything in Python is an object. Objects consist of data attributes and methods.
	Folie 15: Object-oriented programmers group similar objects into classes.
	Folie 16: Classes are like blueprints for objects, so they abstract multiple different objects to a higher level.
	Folie 17: Since classes are blueprints for objects, it’s important distinguish between creating and using classes.
	Folie 18: You can define your own classes, or types, using the keyworld class.
	Folie 19: As with structs, we can attach data to objects within their related class definitions in the constructor: self.data = data
	Folie 20: To instantiate an object, we call the constructor every time a new instance is created: ClassName()
	Folie 21: Calling the constructor creates one instance of a class. Parameters can be added as data attributes: ClassName(params)
	Folie 22: Procedural programming defines functions to create reusable functionality, while OOP uses methods to achieve the same.
	Folie 23: Python methods are defined like functions, but they require self as their first parameter: def method(self, params)
	Folie 24: The keyword self in methods’ parameters within class definitions refers to the instance of a class, which executes the method.
	Folie 25: Classes consist of their definition, data attributes which are defined in a constructor, and methods for binding functionality.
	Folie 26: Encapsulation refers to binding functionality and data to a single object.
	Folie 27: Even objects can be encapsulated within objects to increase usefulness of single objects.
	Folie 28: Let’s continue with the example from the slide before and do some work with our Animal Shelter.
	Folie 29: Use CamelCase for classes, lower_case for methods and attributes, and keep self as self.
	Folie 30: Like structs in procedural programming, objects can not be printed automatically.
	Folie 31: To print an object in a more informative way, defining a method can help.
	Folie 32: Objects are instances of a class and a program can check whether an object is an instance of a particular class.
	Folie 33: Instantiating an object from a class using a constructor creates an object which encapsulates data and procedural attributes.
	Folie 34: Abstraction and Information Hiding
	Folie 35: Using “.”-notation to access data attributes of an object can result in unexpected usage and is a security issue.
	Folie 36: Providing getters and setters in your classes increases security, as you can preprocess in- and output of your objects.
	Folie 37: Private, Protected and Public are the access modifiers in Python
	Folie 38: OOP allows for data abstraction by using access modifiers and getter and setter methods.
	Folie 39: Inheritance
	Folie 40: In real-life we often think of objects belonging together and being organized in hierarchies.
	Folie 41: Inheritance provides a convenient mechanism for building groups of related abstractions.
	Folie 42: Inheritance provides a convenient mechanism for building groups of related abstractions.
	Folie 43: Through the concept of inheritance, we can easily reuse the attributes of a parent class.
	Folie 44: You might have noticed that we called the constructor of our superclass by using super().__init__(…).
	Folie 45: In addition to what subclasses inherit they can add new attributes and override attributes of superclasses.
	Folie 46: Inheritance is one of the key-concepts which make OOP so powerful. So, let’s go through the process step-by-step once again.
	Folie 47: Polymorphism
	Folie 48: Polymorphism in OOP is a powerful way to create programs and is often facilitated via inheritance.
	Folie 49: Dynamic typing and operator overloading are two approaches of polymorphism in Python
	Folie 50: Python facilitates method overloading with default parameters and method overriding via inheritance.
	Folie 51: To print out an Animal, we can override an object’s special method __str__ method.
	Folie 52: Just like __str__ there are further special methods related to all objects, for instance to compare different object with each other.
	Folie 53: The four core concepts of object-oriented programming are encapsulation, abstraction, inheritance, and polymorphism
	Folie 54: Object-oriented programming bears the advantages: simplicity, encapsulation, reusability and modularity.
	Folie 55: These are the take aways from today
	Folie 56: After this lecture, students understand the foundational paradigms of object orientation and inheritance.
	Folie 57

