
Ajax

Key Terms

• Ajax
• JSON
• asynchronous

programming
• XMLHttpRequest

Overview
Back in the 1990s, any time a website was slightly updated with new information, the
entire webpage had to be refreshed and reloaded. Today, thanks to some techniques
collectively known as Ajax, we can incrementally update parts of web pages without
interrupting a user’s experience. You’ve probably seen this on Google when it gives
you search suggestions as you type. Any time you see a portion of a web page update
without the entire web page refreshing, that’s Ajax at work.

Ajax
Ajax, short for asynchronous JavaScript and XML, is an ap-
proach to using existing technologies to make dynamic HTTP
requests. Web applications usually work like this: a request
is made from a browser to get information from a server, the
server sends the appropriate information, and the browser
updates the user’s page. However, with Ajax, there is an inter-
mediary between the browser and the server known as the
Ajax engine; the visual presentation of a website (HTML/CSS)
is separated from the handling of HTTP requests. By using an
Ajax engine (written in JavaScript) to handle HTTP requests,
the actual HTML and CSS page displayed on the browser is
upheld while the request is being made. After the information
from the request has reached the browser, the Ajax engine
can directly update just a portion of the page’s HTML or CSS,
preventing the entire page from reloading.

Because the server is no longer needs to send entire HTML/
CSS data, Ajax uses simple notations to send small packets of
information. XML, or Extended Markup Language, is a nota-
tion used to send information. However, most programmers
today use JSON, or JavaScript Object Notation, instead be-
cause it is native to JavaScript.

All of these technologies work together to enable asynchro-
nous programming. Synchronous programming is when you
have to wait for previous parts of your program to finish run-
ning before moving onto another task. However, in web pro-
gramming, the web application has to be listening for many
possible events at once and then act accordingly. Asynchro-
nous programming allows programs to handle multiple tasks
at once. Using asynchronous programming with JavaScript
means web applications can wait and respond to any number
of events, reducing application response time and improving
user experience.

This is CS50.© 2018

CS50

XMLHttpRequest and jQuery
The programming techniques that make up Ajax are wrapped up in a native Javascript object known as the
XMLHttpRequest (XHR) object. This object contains the functions to control the Ajax engine and perform
asynchronous HTTP requests. The XHR object allows functions to be dependent upon what state a request is
in, enabling seamless experiences for users of web applications. Many programmers use XHR indirectly through
jQuery because the syntax is more convenient. Thanks to programmers before us, all you have to do to take ad-
vantage of Ajax in your projects is read through the jQuery and XHR object documentation.

w/o Ajax
web browser web browser

HTML/
CSS
data

HTTP
request

HTTP
request

JSON/
HTML
data

JS call HTML/
CSS

server server

w/ Ajax

Ajax engine

This is CS50.© 2018

Key Terms

• algorithm
• correctness
• efficiency
• loops
• conditions

Overview
Recall that computing involves taking some form of input, and then processing that
input in order to produce some form of output. Processing input will often require the
use of an algorithm, which are sequences of instructions that can be executed by a
computer. In computer science, these algorithms are usually written in code. Comput-
ers depend upon such algorithms in order to perform tasks. In many cases, multiple
different algorithms can be used to achieve the same result. However, in some cases,
one algorithm will be faster than another at arriving at the correct result.

A Correct Algorithm
Algorithms are just sequences of steps that a computer can
follow in order to translate input into output. Algorithms
can be expressed in English as a detailed list of steps.

Take, for example, the task of finding a name (e.g. “Mike
Smith”) in a phone book. One possible algorithm (repre-
sented to the left) involves picking up the phone book,
opening to the first page, and checking to see if Mike Smith
is on the page. If he’s not, flip to the next page, and check
that page. Keep repeating this until you either find Mike
Smith or get to the end of the book.

This algorithm is correct — if Mike Smith is in the phone
book, then this algorithm will succesfully allow someone
to find him. However, algorithms can be evaluated not only
on their correctness but also on their efficiency: a measure
of how well an algorithm minimizes the time and effort
needed to complete it. The one-page-at-a-time algorithm is
correct, but not the most efficient.

We could improve the algorithm by flipping two pages at a
time instead of one — though we’d have to be careful of the
case where we might skip over the page with Mike Smith’s
name, at which point we’d have to go back a page. But
even this algorithm is not the most efficient.

$Q�(I´FLHQW�$OJRULWKP
Consider instead what might be a more intuitive, and efficient, algorithm. First, open to the middle of the phone
book. If Mike Smith is on the page, then our algorithm is done. Otherwise, taking advantage of the fact that the
phone book is sorted, we know which half of the book Mike Smith will be in, if he’s in the book at all. Thus, we
can eliminate half of the book, and now repeat our algorithm using a book that’s effectively half the size. We can
repeat this process until we arrive at a single page, which either does or does not have Mike Smith’s name on it.
This algorithm is pictured above (below our original algorithm).

This algorithm is more efficient than the original algorithm. Consider what would happen if a 500 page phone
book were to double in size the next year. Using the original algorithm, it might take 500 more steps to go
through 500 more pages. However, using the second algorithm, it would only take 1 additional step when search-
ing through a phone book that’s twice the size.

Note that our algorithms have made use of several programming constructs, including loops, which repeat steps
multiple times, and conditions, which only executes certain steps if some statement is true.

 1 pick up phone book
�ɩ���������º����������������������
�ɪ��������������
�ɫ����ũ�����Ū���������������
�ɬ���������������
�ɭ���������������������������
�ɮ������»���������������
�ɯ�����������������ɪ
�ɰ�����
ɨɥ�������������

 1 pick up phone book
�ɩ�����������������������������
�ɪ��������������
�ɫ����ũ�����Ū���������������
�ɬ��������������
�ɭ���������ũ�����Ū�������������������
�ɮ��
�ɯ����������������ɪ
�ɰ���������ũ�����Ū�����������������
ɨɥ���
ɨɨ����������������ɪ
ɨɩ�����
ɨɪ������������

AlgorithmsCS50

Arrays and Strings

Key Terms

• array
• string
• size
• index
• null-terminator

Overview
Recall that variables are used to store values. Quite frequently, we may want to use
multiple variables to store a sequence of values: like a sequence of 10 test scores, or 50
addresses. For situations like these, C has a data structure called an array: which stores
multiple values of the same type of data. For instance, an array of ints would store
multiple int values back-to-back. The string type that you have been using is really just
an array of chars.

Arrays
Like variables, arrays are declared by first stating the type of the
data to be stored, followed by the name of the array. In brackets
after the name of the array is the size of the array: which defines
how many values the array will hold. For example, line 1 at left de-
clares an array of 5 ints.

You can visualize an array as a sequence of boxes, each one hold-
ing a value, and each one with a numbered index, which is a num-
ber that can be used to access a specific value in an array. In C,
arrays are zero-indexed, meaning that the first item in an array has
index 0, the second item has index 1, etc.

To access a particular value in an array, use the name of the array,
followed by the desired index in brackets. Line 2 at left sets the
value of the first item in the ages array (the one at index 0) to 28.

The value at each array index can be treated like a normal variable.
For example, you can change its value, apply arithmetic or assign-
ment operators to it.

Since each value in an array is referenced by its index number, it's
easy to loop through an array. Lines 7 through 10 define up a for
loop, which iterates through the entire array, and increases each
age value by 1.

This is CS50.© 2018

Strings
In C, a string is represented as an array of char values. Thus, when
we write a line like string s = "CS50";, this information is stored as
an array of chars, with one character at each index. The final index of
a string in C is the null-terminator, represented by '\0'. The null-ter-
minator is the character that tells a string that the string is over, and
that there are no more characters in the string.

10 2 3 4
1 int ages[5];

2 ages[0] = 28;

3 ages[1] = 15;
4 ages[2] = ages[1];
5 ages[3] = ages[1] - 1;
6 ages[4] = 17;

 7 for (int i = 0; i < 5; i++)
 8 {
 9 ages[i] += 1;
 10 }

10

28
2 3 4

1

15
0

28
2

15
3

14
4

17

1

16
0

29
2

16
3

15
4

18

1

'S'
0

'C'
2

'5'
3

'0'
4

'\0'

string s = "CS50";

Since a string is just an array, you can index into the string just like you would index into any other array
in order to access the value of a particular character. For instance, in the example above, indexing into s[0]
would give you the character 'C', the first character in the string "CS50".

This also makes it very easy to use a loop to interate through a string and perform computation on each indi-
vidual character within a string, by first initializing the loop counter to 0, and repeating until the last index of
the string. The function strlen() takes in a string as input, and returns the length of the string as an integer,
which may help in determining how many times the loop should repeat.

CS50

AI and Machine Learning

Key Terms

• machine
intelligence

• Turing test
• machine learning
• training

Overview
From self-driving cars to virtual assistants like Siri and Alexa, artificial intelligence (AI)
is becoming more and more common in our everyday lives. The field of AI is centered
around the development of machine intelligence, or the ability of machines to think
and react like humans. But why would we want to program computers and robots to
think like us? Well, it turns out that sometimes they can make decisions and answer
questions even better than we can. AI has already had a major impact on many parts
of our world, including banking, technology, marketing, entertainment, and healthcare,
and will likely soon change many more!

This is CS50.© 2018

CS50

Future of AI
The AI that exists today is known as weak AI, or that which is designed to complete a specific task like classi-
fying images or driving. The term strong AI refers to the point at which machines can think for themselves. We
don’t know when, if ever, we will reach the point where we have superintelligent machines. Still, the media is full
of depictions of strong AI gone terrible.

In the meantime, we need to grapple with the issues emerging from the rise of AI. Consider, for instance, that
we tell a self-driving car to get from point A to point B. It successfully completes this task but it may not be able
to make ethical decisions like if it had to pick between hitting three pedestrians or one pedestrian (commonly
known as the trolley problem). The machine did what we asked it to do, but not without serious consequences.
Who should be held accountable?

Some scholars worry about superintelligence with goals that are not aligned with ours. But will artificially intelli-
gent computers take over the world? We’ll soon find out!

Turing Test
Computer science pioneer and mathematician, Alan Turing, also played an important role in the field of AI. In his
1950 paper, “Computing Machinery and Intelligence,” Turing asked the monumental and ever-relevant question,
“Can machines think?” This sparked many conversations that influenced the field. Furthermore, he proposed an
“imitation game,” now known as the Turing test, to determine whether a machine exhibits human-like intelligent
behavior to the point where the two are indistinguishable. It works by having a “judge” guess, based only on
their answers to the same set of questions, which is the computer and which the human.

The test’s efficacy has been widely debated. In recent years, many scientists have claimed to have passed the
test with their programs, while still others hold that no programs have been able to do this so far. This is a pretty
incredible feat since the first artificial intelligence program, the Logic Theorist, was presented at a conference in
1956!

Machine Learning
One method for achieving artificial intelligence is machine learning, a term which was coined in 1959 and is gen-
erally defined as the techniques we use to have programs learn from data. There are many applications for these
programs, including computer vision and natural language processing. And with the rise of big data, this method
is becoming ever more relevant.

Typically, the first step in machine learning is collecting and validating data. Then, a model is set up and trained
with part of the data. This training, or learning, can be supervised, which means the data set is labeled, or un-
supervised, where the data is unlabeled. After training, the model can be further tested and improved, and its
accuracy can be measured. Finally, we can use our model to make judgements or predictions about other data.

Deep learning is a subset of machine learning which uses artificial neural networks (ANNs). This system of con-
nected nodes is loosely based on the biological neural networks of animal brains. By using ANNs, some scientists
think we can program machines to think more like us.

This is CS50.© 2018

ASCII

Key Terms

• encoding
• ASCII
• ASCII table

Overview
Computers need a way of storing a variety of types of information, including text. How-
ever, since computers can only store data as 0s and 1s, computers need a way of using
those 0s and 1s to represent characters in text. ASCII is a standard way of translating
characters to and from sequences of binary digits that computers can understand.

ASCII Encoding Standard
In order to represent characters as numbers, a character encod-
ing standard is used, which gives common characters a unique
number to identify them. ASCII is a common encoding stan-
dard, which computers use in order to store text-based data. In
the standard, the number 65 corresponds to the capital letter
‘A’. Thus, if a computer wanted to store the capital letter ‘A’, it
would need to store the number 65 in binary (which happens to
be 1000001). The next 25 values in the ASCII encoding standard
represent the other 25 letters, in order: so 66 represents ‘B’, 67
represents ‘C’, and so on.

Lowercase letters also have numerical representations in ASCII.
The lowercase letter ‘a’ is represented by the number 97, ‘b’ is
represented by 98, and so on. Thus, for a computer to store the
lowercase letter ‘a’, it would need to store the number 97 in binary,
which is 1100001. Note that this binary number differs from the
binary representation of capital ‘A’ by just one bit: the value in the
32s place. This is because, in ASCII, lowercase letters are always
represented as numbers 32 greater than their respective upper-
case letters. As a result, letters can easily be switched from lower-
case to uppercase or vice versa just by switching a single bit—the
one in the 32s place—to 1 or 0 (1 for lowercase, 0 for uppercase).

There’s no reason why ASCII has to use these exactly values:
ultimately, the decision as to what number maps to which letter is
arbitrary. What’s important is that the standard is consistent: any
computer can read and understand the numbers the same way.

ASCII’s Limits
ASCII is frequently represented on an ASCII table: which is just a table that shows all possible ASCII characters,
and which numbers correspond to them.

The original ASCII table represents all characters using just 7 bits: which means that there are 27, or 128, possible
characters that can be represented in ASCII. Several extensions to ASCII exist which add an 8th bit, allowing for
a total of 256 possible characters to be represented. Since there are only 52 letters, this means that ASCII has
space to represent other types of characters: like punctuation, numbers, and some basic symbols (like the $ sign
or the % sign).

However, event with 8-bit ASCII encoding, there are still a lot of characters that can’t be represented, because
there are more than 256 possible characters. For example, many mathematical symbols and characters in oth-
er languages do not fit into the standard ASCII table. As a result, other character encoding standards exist that
have far more possible character options: Unicode, for example, is a character encoding standard that allows for
more than 1 million possible characters to be represented. The first 128 characters in Unicode are identical to the
128 characters in ASCII, which makes them compatible with one another.

65 A

66 B

67 C

89 Y

90 Z

97 a

98 b

121 y

122 z

CS50

Binary Search

Key Terms

• algorithms
• linear search
• binary search
• pseudocode

Overview
There are many different algorithms that can used to search through a given array.
One option is linear search, but it can be a rather lengthy process. Luckily, there is a
faster searching algorithm: binary search. You might recall that binary search is similar
to the process of finding a name in a phonebook. This algorithm’s speed can be leaps
and bounds better than linear search, but not without a cost: binary search can only be
used on data that is already sorted.

The Binary Search Algorithm
The basis of binary search relies on the fact that the data
we’re searching is already sorted. Let’s take a look at what
the binary search algorithm looks like in pseudocode. In this
example, we’ll be looking for an element k in a sorted array
with n elements. Here, min and max have been defined to be
the array indices that we are searching between, marking
the upper and lower bounds of our search.

1 set min = 0 and max = n - 1
ɩ��º������������������
ɪ�������������������������ƃ������Ƅ
ɫ� ������������������Ş�ɨ
ɬ� �����������ɩ
ɭ���������������������������������ƃ������Ƅ
ɮ� ������������������ʫ�ɨ
ɯ� �����������ɩ
ɰ�����������������������������ƃ������Ƅ
ɨɥ�� ������������������������Š
ɨɨ�����
ɨɩ� ���������������������

Using the algorithm described above, let’s search for the
number 50 in the array on the right. First we set the min =
0 and max = 7. Next, calculate the ������ of the array. Well,
how do we decide whether to pick the array index 3 or 4 as
the ������? It actually does not matter, as long as the algo-
rithm is consistent. For our algorithm, let’s choose 3. We’ve
now determined that the ������ element is �����ƃɪƄ, or 29.
Since 50 is larger than 29 and our array is sorted, we know
that 50 will not be on the left of 29. Therefore, there is no
need to check those elements. To continue the search, min is
set to 4, max remains at 7, and we repeat the process!

This is CS50.© 2018

Binary Search vs. Linear Search

CS50

In computer science, it is a common theme that whenever we make some improvement, it is at the cost of anoth-
er factor. In this case, we trade the speed of a searching algorithm for the time it takes to sort the array. In some
cases, it would be faster to just use linear search rather than to sort the data and then use binary search. Never-
theless, binary search is useful if you plan on searching the array multiple times. In case an element does not exist
in the array, linear search would iterate through the entire array – however long it may be – to know that the given
element does not exist in the array. In binary search, we can be more efficient. Using the algorithm described in
our pseudocode, if the searched element is less than the initial value at min or larger than the initial value at max
(the first and last elements of the array, respectively), the algorithm knows the element is not in the array.

Find the 50!

13 3829 42 501 7

min = 0; max = 7; middle element = 29

min = 4; max = 7; middle element = 42

min = 6; max = 7; middle element = 50

38 42 50

50

63

63

63

50

50 is found!

63

This is CS50.© 2018

Binary

Key Terms

• binary
• base
• decimal

Overview
Recall that computers represent data in the form of bits, which are just values that can
be either 0 and 1. In order to perform mathematical calculations with bits, computers
use a number system called binary, which is a number system which only uses two
digits: 0 and 1.

Number Systems
Every number system has a base, which refers to the number of
possible values each digit can take. Most people are used to the
decimal number system, also known as the base 10 system, where
digits can be any value from 0 to 9. In the decimal system, each
digit in a number represents a power of 10. The rightmost digit
represents the 1s place (which is 100). The digit second from the
right is the 10s place (or 101). The next digit over is the 100s place
(or 102). To compute the value of a number, just multiply the digit
in each place by the value of the place, and add the numbers
together.

Binary is a number system with base 2, where digits can only be
0 to 1. In this system, each place value in a number represents a
power of 2. The rightmost digit is still the 1s place (which is 20).
The next digit over is the 2s place (equal to 21). The next digit over
is the 4s place (equal to 22), and it would continue on: with the 8s
place, the 16s place, the 32s place, etc. To compute the value of a
binary number, just multiply the digit in each place (either 1 or 0)
by the value of the place, and add the numbers together. So 110
becomes 1x4 + 1x2 + 0x1 = 4 + 2 + 0 = 6.

Counting in Binary
Counting in binary is much like counting in decimal, with the
restriction that we’re only allowed to use two digits: 0 and 1. So
0 translated to binary is still 0, and 1 translated to binary is still 1.
But since binary doesn’t allow the digit 2, in order to represent 2
in binary we need another binary digit. Thus, the number 10 can
be used to represent 2. Since there is a 1 in the 2s place, and a 0
in the 1s place, the value of the number is 2x1 + 0x1 = 2. If 2 in
binary is 10, then 3 in binary is 11.

However, to represent the number 4, we’ve once again run out of
bits. In order to represent the number, a third bit is required, to
create a value in the 4s place. 100 therefore is the binary repre-
sentation of the number 4.

Mathematics that can be performed in the decimal system can
also be performed in binary. Binary numbers can be counted,
added, subtracted, multiplied, and divided just like numbers in
decimal, and thus can be used by computers in order to execute
computations and make calculations.

1s

Decimal System

10s100s

3 2 8

(3 x 100)

300 + 20 + 8
328

(2 x 10)+ (8 x 1)+

1s

Binary System

2s4s

1 1 0

(1 x 4)

4 + 2 + 0
6

(1 x 2)+ (0 x 1)+

Decimal to Binary

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

CS50

 1 if (x > 0)
 2 {
 3 printf("positive\n");
 4 }
 5 else if (x < 0)
 6 {
 7 printf("negative\n");
 8 }
 9 else
10 {
11 printf("zero\n");
12 }
13
14
15 switch (x)
16 {
17 case 1:
18 printf("A\n");
19 break;
20 case 2:
21 printf("B\n");
22 break;
23 default:
24 printf("C\n");
25 }
26
27
28 int y = (x > 3) ? 2 : 1;

Boolean Expressions

Key Terms

• condition
• boolean
 expression
• if statement
• switch statement
• ternary operator

Overview
Conditions are how programmers can make decisions in programs, by allowing some
parts of the code to only run under certain circumstances. Conditions will generally
work by evaluating a boolean expression, which is an expression that will have a value
of either true or false. Programmers can set conditions such that different code will
run depending on what the value of the boolean expression is.

Boolean Operators
Boolean operators are used to create boolean expressions that
evaluate to true or false. Common boolean operators include the
comparison operators: < (less than), > (greater than), == (equal to),
<= (less than or equal to), >= (greater than or equal to), and != (not
equal to). For instance, in line 1 to the left, a is set to true because
the expression 3 < 5 is true (because 3 is in fact less than 5). In line
2, b is set to false because the expression 2 >= 8 is not true.

Logical operators can also be used to combine boolean expres-
sions. && is the logical AND operator: it will evaluate to true if both
expressions on either side of it are true. || is the logical OR oper-
ator: it evaluates to true if at least one of the two expressions on
either side is true. And !, the logical NOT operator, evaluates to the
opposite of whatever the expression immediately after it is.

This is CS50.© 2018

Conditions
Conditional branching refers to the idea that different parts of code
should execute under different circumstances. The most common type
of conditional is the if statement: where a certain block of code (en-
closed in brackets) will only run if the condition (whatever is in the pa-
rentheses after the word if) evaluates to true.

Optionally, C also allows you to include an else block after an if state-
ment, which defines which code should run if the if condition evaluates
to false. C will also allow you to include one or multiple else if state-
ment after an if statement, to add additional conditions that could run
different blocks of code. The if statement to the right (lines 1-12) will
print "positive\n" if the value of x is greater than 0, "negative\n" if the
value of x is less than 0, and "zero\n" if the value of x is equal to 0.

C also has other ways of expressing conditionals. The switch statement,
shown to the right (lines 15-25), takes one variable, and defines what
code should run based on which case the variable matches. In the exam-
ple at right, if x is equal to 1, "A\n" is printed; if x is equal to 2, "B\n" is
printed, and in all other cases (the default case), "C\n" is printed. Code
within cases should end with break so that the program knows to stop
executing code and go to the end of the switch statement.

The ternary operator is a third type of condition. The ternary operator
takes an expression, and evaluates to one value if the expression is true,
and another value if it is false. In the example on line 28, if x > 3, y is set
to 2, and 1 otherwise.

1 bool a = 3 < 5;
a

true

2 bool b = 2 >= 8;
b

false

3 bool c = a && b;
c

false

4 bool d = a || b;
d

true

5 bool e = !d;
e

false

CS50

Bubble Sort

Key Terms

• bubble sort
• array
• pseudocode

Overview
There are limited ways to search a list that is unsorted. It is often more efficient to sort
a list and then search it. One of the most basic sorting algorithms is called bubble sort.
This algorithm gets its name from the way values eventually “bubble” up to their prop-
er position in the sorted array. This basic approach to sorting narrows the scope of our
problem to focusing on ordering just two elements at a time, instead of an entire array
at a time. This approach is very straightforward, but possibly at the expense of making
an inordinate number of swaps just to put one single element into position.

Implementation
Bubble sort works by comparing two adjacent numbers in
a list, and swapping them if they are out of order. Looking
at the example on the left, if we are given an array of the
numbers 5, 1, 6, 2, 4, and 3 and we wanted to sort it using
bubble sort our pseudocode for one single pass might look
something like this:

for every element in the array
 check if element to the right is smaller
 if so swap the two elements
 else move on to the next element in the list

When this is implemented on the example array, the pro-
gram would start at 5 and compare it with 1. Since 1 is
smaller than 5 it would swap them. It would then move on
to compare 5 and 6 since those are in the correct order, we
just move on to the next element. Next 6 and 2 are com-
pared, and so on.

Finally after doing this for all the elements in the array we
are left with the array 1, 5, 2, 4, 3, and 6. It’s not completely
sorted, but notice that after the first passthrough, the 6 is
already in its correct location. After n passthroughs the last
n elements are in their correct position. This fact can be
used to optimize this algorithm since it is not necessary to
look at those correctly sorted elements. It is this effect of
the larger elements “bubbling” to the right side that gives
this algorithm its name!

This is CS50.© 2018

Sorted Arrays
If bubble sort was implemented only as above, we would only go through one passthrough, but as the example
shows, it is not guaranteed that the array will be sorted after one pass. So how many times should this algorithm
be run? Well in the worst case scenario, a reverse sorted list (6, 5, 4, 3, 2, 1), it might need to run 5 times. Indeed
the same would hold true for n elements, the algorithm might need to run n-1 times. That seems wasteful though,
since it would only need to run that maximum number of times if the array is a “worst case scenario” (more on
that in the time complexity module).

How can you ensure you only run this algorithm the necessary amount of times, maybe saving a few steps? Well,
if this algorithm is run and no swaps are made, it must be true that the array is sorted (think about it)! Maybe
then it would make sense to amend our implementation to include a counter for the amount of swaps made. If
counter == 0, then the array is sorted, however if counter > 0, then more passthroughs are needed to sort the
array. Now we only decide at the end of every passthrough whether more passthroughs are necessary!

CS50

61 42 35

65 42 31

25 46 31

Step-by-step process of 1 pass
through in bubble sort

25 64 31

25 34 61

65 42 31

Bugs and Debugging
Key Terms

• bugs
• debugging
• debugger
• breakpoint
• debug50

Overview
A bug is an error in code which results in a program either failing, or exhibiting a be-
havior that is different from what the programmer expects. Bugs can be frustrating to
deal with, but every programmer encounters them. Debugging is the process of trying
to identify and fix bugs that exist in code. Programmers will often do this by making
use of a program called a debugger, which assists in the debugging process.

Debugging Basics
Programs generally perform computations much faster than a human possibly could, which makes it difficult to
see what's wrong with a program just by running it all the way through. Debuggers are valuable because they
allow a programmer to freeze a program at a particular line, known as a breakpoint, so that the programmer can
see what's happening at that point in time. It also allows the programmer to execute the program one line at a
time, so that the programmer can follow along with every decision that a program makes.

This is CS50.© 2018

Using debug50
debug50 is a program that we've created that runs a built-in graphical debugger in the CS50 IDE. Before you run
debug50, you must set at least one breakpoint. If you have a general sense for where your program seems to be
going wrong, it may be wise to set a breakpoint a few lines before there, so that you can see what's happening
in your program as it moves into the section that you believe is causing the problem. If you're not sure at all, then
it's totally fine to set a breakpoint at the first line of your main function so that you can step through the entire
code from the beginning. To set a breakpoint, click the space to the left of the line number of your program. You
will see a red dot appear in that space and it will be added to the list of all your breakpoints at the bottom of the
graphical debugger window. You can remove a breakpoint by clicking on the red dot next to the line number.

Once you're satisfied with your breakpoints, run your program with as usual with debug50 ./program_name and
any command-line arguments. Your program will run, and automatically stop at any breakpoints. In the debug-
ger window, you'll see several tabs you can interact with.

At the top of the window, you'll see five buttons. The
first, the blue triangle, will run your code until it hits the
next breakpoint. The next button, the curved arrow,
allows you to skip over a block of code. Next to that
is the down arrow which allows to move through your
code slowly one line at a time. The last arrow allows you
to step out of a function (other than main). The last icon,
the outline of a circle, clears all of the breakpoints that
you set in your program.

CS50

The window at left summarizes some some features of
debug50. In the "Watch Expressions" tab, you can type in a
variable or function you want to watch while your code runs.

The "Call Stack" tab displays what function the line of code
you are on is in and the file path for the programming that is
running.

The "Local Variables" and "Breakpoints" are pretty intuitive.
For each variable, you can see it's name, value and type.
You can even override variable values by clicking on the
value and typing in a new value. For each breakpoint you've
marked, you'll see the file name, line number, and what ap-
pears on that line of code. You can turn off breakpoints from
this tab by clicking on the checkbox next to the breakpoint,
or delete it by clicking on the 'x' in the top right corner of the
breakpoint when you hover over it.

Command-Line Interaction

Key Terms

• command-line
 arguments
• argument count
• argument vector

Overview
When running a program from the command line, you've generally executed a com-
mand like ./program_name at the command line. C also allows you to specify a pro-
gram's command-line arguments, which allows the person running the program to
pass arguments into the main function of the program by specifying the arguments
at the command line. This offers an alternative means of providing input to a program
beyond just requesting input while a program is running, such as with get_string().

argc, argv
Many of the command-line programs that you have likely called
before (make, cd, clang, mkdir) all take command-line arguments.
In C, command-line arguments are passed into the main function
as inputs. However, we've previously written our main functions to
take no arguments (void).

To accept command-line arguments, we can revise the main func-
tion to take two arguments: argc, an integer, and argv, an array of
strings.

argc, which stands for "argument count", represents the number
of arguments passed into through the command line. Each word
(separated by spaces) counts as its own argument, and the calling
of the program itself (e.g. ./hello) counts as an argument.

argv, which stands for "argument vector", is the actual array rep-
resenting the arguments themselves. Each value in the array is a
string.

If you were to look at argc and argv when calling a program with no arguments, like calling ./hello, argc
would be 1 (because the calling of the program is the only argument). argv, on the other hand, would be an
array consisting of just one element: the string "./hello" stored at index 0.

If you were to look at argc and argv when calling a program that does have arguments, like calling mkdir src,
argc would be 2, since two arguments are passed in via the command line, and argv would be an array with
two elements: the string "mkdir" stored at index 0, and the string "src" stored at index 1.

This is CS50.© 2018

Using Command Line Arguments
Shown to the right is an example of a program which accepts
command-line arguments. Notice on line 4 that the definition of
the main function has changed to include the arguments argc
and argv. No size of argv is specified on line 4, so that any array,
regardless of its size, can be passed into the main function.

Inside of main function, the program loops through the array,
starting at index 0, and incrementing so long as i < argc. It's im-
portant to stop there, because the largest index of argv that you
can access is argc - 1 (since arrays are zero-indexed). During
each iteration, the program prints out the value of argv at index i.

The result of the program is that each of the program's command
line arguments is printed on a new line.

0

./hello

./hello
argc

1

argv

1

src

0

mkdir

argvmkdir src
argc

2

clang -o hello hello.c

argc

4
1

-o

0

clang

2

hello

argv
3

hello.c

 1 #include <cs50.h>
 2 #include <stdio.h>
 3
 4 int main(int argc, string argv[])
 5 {
 6 for (int i = 0; i < argc; i++)
 7 {
 8 printf("%s\n", argv[i]);
 9 }
10 }

CS50

Compiling

Key Terms

• compiling
• machine code
• preprocessing
• assembly
• object code
• linking

Overview
Compiling is the process of translating source code, which is the code that you write in
a programming language like C, and translating it into machine code: the sequence of
0s and 1s that a computer's central processing unit (CPU) can understand as instruc-
tions for how to execute the program. Although the command make is used to compile
code, make itself is not a compiler. Instead, make calls upon the underlying compiler
clang in order to compile C source code into object code.

This is CS50.© 2018

Linking
If a program has multiple files that need to be combined into a single machine code file (such as if a program
includes multiple files or libraries like math.h or cs50.h), then one final step is required in the compilation process:
linking. The linker takes multiple different object code files, and combines them into a single machine code file
that can be executed. For example, linking the CS50 Library during compilation is how the resulting object code
knows how to execute functions like get_int() or get_string(). It is important to note that only one file can have
a main function so that the program knows where to begin.

Source Code

Preprocessed
Source Code

Assembly

Object Code

Preprocessing

Compiling

Assembling

Linking

Machine Code

Preprocessing
The entire compilation process can be broken down into four steps. The first
step is preprocessing, performed by a program called the preprocessor.
Any source code in C that begins with a # is a signal to the preprocessor to
perform some action.
For example, #include tells the preprocessor to literally include the contents
of a different file in the preprocessed file. When a program includes a line like
#include <stdio.h> in the source code, the preprocessor generates a new
file (still in C, and still considered source code), but with the #include line
replaced by the entire contents of stdio.h.

Compiling
After the preprocessor produces preprocessed source code, the next step
is to compile (using a program called a compiler) C code into a lower-level
programming language known as assembly.
Assembly has far fewer different types of operations than C does, but by
using them in conjunction, can still perform the same tasks that C can. By
translating C code into assembly code, the compiler takes a program and
brings it much closer to a language that a computer can actually under-
stand. The term "compiling" can refer to the entire process of translating
source code to object code, but it can also be used to refer to this specific
step of the compilation process.

Assembling
Once source code has been translated into assembly code, the next step is
to turn the assembly code into object code. This translation is done with a
program called the assembler.
Object code is essentially machine code with some non-machine code
symbols. If there's only one file that needs to be compiled from source code
to machine code, the compilation process is over now. However, if there are
multiple files to be compiled, a file's object code only represents part of the
program and an additional step is required. The object code file's non-ma-
chine code symbols denote how the file fits with the other parts of the pro-
gram. The entire program is put together in a process called linking.

CS50

This is CS50.© 2018

Computational ComplexityCS50
Key Terms

• computational
complexity

• Big O
• Big Ƨ

Overview

Computational Complexity Notation
Big O notation, shorthand for "on the order of", is used to denote
the worst case efficiency of algorithms. Big O notation takes the
leading term of an algorithm's expression for a worst case scenar-
io (in terms of n) without the coefficient. For example, for linear
search of an array of size n, the worst case is that the desired ele-
ment is at the end of the list, taking n steps to get there. Using Big
O notation, we'd say linear search runs in O(n) time. We can calcu-
late the computational complexity of bubble sort in the same way,
albeit with a little more math. Remember that bubble sort involved
comparing things by pairs. In a list of length n, n - 1 pairs were
compared. For example, if we have an array of size 6, we would
have to compare array[0] and array[1], then array[1] and ar-
ray[2], and so on until array[4] and array[5]. That's 5 pairs for an
array of size 6. Bubble sort ensures that after k passthroughs of the
array, the last k elements will be in the correct location. So in the
first passthrough there are n-1 pairs to compare, then on the next
passthrough only n-2 comparisons and so forth until there is only
1 pair to be compared. In math (n-1) + (n-2) + ... + 1 can be simplified to n(n-1)/2 which can be simplified even
further to n2/2 - n/2. Looking at the expression n2/2 - n/2, the leading term would be n2/2, which is the same as
(1/2) n2. Getting rid of the coefficient, we are left with n2. Therefore, in the worst case scenario, bubble sort is on
the order of n2, which can be expressed as O(n2). Similar to big O, we have big Ω (omega) notation. Big Ƨ�refers
to the best case scenario. In linear search, the best case would be that the desired element is the first in the
array. Because the time needed to find the element does not depend on the size of the array, we can say the
operation happens in constant time. In other words, linear search is Ω(1). In bubble sort, the best case scenario
is an already sorted array. Since bubble sort only knows that a list is sorted if no swaps are made, this would
still require n-1 comparisons. Again, since we only use the leading term without the coefficients, we would say
bubble sort is Ƨ(n).

Comparing Algorithms
Big O and big Ƨ�can be thought of as upper and lower bounds,
respectively, on the run time of any given algorithm. It is now
clear to see which algorithms might be better to use given a
certain situation. For instance, if a list is sorted or nearly sort-
ed, it would not make sense to implement a selection sort
algorithm since in the best case, it is still on the order of n2 ,
which is same as it's worst case run time. Binary search may
seem to be the fastest search but it is clear to see that search-
ing a list once with linear search is more efficient for a one
time search, since binary search run requires a sort algorithm
first, so it could take O(log(n)) + O(n2) to search a list using
binary if the list is not already sorted.

The subject of computational complexity (also known as time complexity and/or space
complexity) is one of the most math-heavy topics, but also perhaps one of the most
fundamentally important in the real-world. As we begin to write programs that pro-
cess larger and larger sets of data, analyzing those data sets systematically, it becomes
increasingly important to understand exactly what effect those algorithms have in terms
of taxing our computers. How much time do they take to process? How much RAM do
they consume? One aspect of computational complexity is the amount of time an algorithm takes to run, in
particular considering the theoretical worst case and best case scenarios when running programs.

size of problem

ti
m

e

n2
n

log(n)

Algorithm Big O Big Ω

linear search O(n) Ƨ(1)

binary search O(log(n)) Ƨ(1)

bubble sort O(n2) Ƨ(n)

insertion sort O(n2) Ƨ(n)

selection sort O(n2) Ƨ(n2)

Computers and Computing

Key Terms

• computer
• computing
• input
• output
• algorithm
• programming
• computational
 process
• hardware
• software
• operating system
• CPU

Overview
A computer, in the most general sense, is just a device that accepts data or input, and
processes it in some way to automatically produce a result. When a computer is do-
ing any kind of work, whether it’s opening an application, editing an image, or playing
a song, it is computing. Computing, in the most general sense, means calculating. In
order for a computer to operate correctly, many different parts of the computer have
to communicate and interact with one another in just the right way.

Inputs and Outputs
A computer starts by taking in some sort of data or information, called input. Input
can take a variety of forms—mouse clicks, keyboard presses, taps on a touch screen, or
button presses, for instance. Input can also take less traditional forms: such as the way
smoke detectors take in information from the environment, or the way cars take input
from a steering wheel in order to determine which way to turn.

Computers use the inputs provided to them in order to generate a result. In computer science, this result is called
the output. In the case of a traditional desktop computer, output might take the form of whatever is displayed on
the user’s screen. But output can take many other forms, such as producing sound or causing motion.

Somehow, computers need to translate inputs into outputs, by processing the information in the input in order to
generate the necessary output. This processing takes the form of an algorithm, which is just a set of rules that a
computer must follow in order to translate inputs into the desired outputs. Programming is the process of pro-
viding a computer with a set of instructions, or an algorithm, in order to perform a particular task.

This is CS50.© 2018

The Computational Process
The process of translating inputs into outputs is known as the computational process, and will likely involve per-
forming a series of calculations in the form of an algorithm.

The computational process can range in its complexity and in the number of steps required to complete a task.
Sometimes, the computational process is relatively simple, like the process of calculating 5+3. In other cases,
many computational tasks are much more complicated. All tasks computers perform, like a GPS calculating a
route from home to work, or an alarm going off at a certain time, require computation.

How Computers Work
Each part of the computer serves a specific function, and together they allow for computers to perform tasks.
Computers require a combination of hardware, the physical parts that make up the computer, and software, the
programs and instructions that run on the computer. Much of a computer’s hardware is attached to the com-
puter’s motherboard (or logic board), which contains the hardware that helps different parts of the computer
communicate with each other.

Computers require electricity to function, so they must have a power supply— desktop computers plug into an
electrical outlet, and laptop computers can use a battery. When the power button on a computer is pressed, the
power supply begins providing electricity to the computer, which begins the process of starting up the comput-
er’s hardware.

After the computer’s hardware has started up, the next step is getting the computer’s software ready, beginning
with the operating system, which is the software that manages the execution of other programs on the ma-
chine (common operating systems include Windows, macOS, and Linux). The operating system, as well as other
software and computer files, are stored on the computer’s hard drive, which is the computer’s primary form of
storage. Each computer also has a Central Processing Unit (CPU), often referred to as the “processor,” which is
responsible for running the computer’s software and executing computations.

CS50

CPU and SoC

Key Terms

• CPU
• core
• hyperthreading
• motherboard
• SoC

Overview
One key component of any computer is a CPU. A CPU (or processor) is the brains of
your computer; it runs applications from calculators, web browsers, to video games.
However, a computer is more than just a CPU. CPUs handle the calculations that allow
us to run code, but they must work without other hardware components such as mem-
ory and graphic processing units (GPUs) to function as the computers we know today.

CPUs
A CPU consists of billions of microscopic transistors that together handle instructions in the form of 0s and 1s.
These instructions are prescribed by humans in the form of code, and so by writing code, we can tell a comput-
er to do whatever we want it to do. A CPU’s tasks can be broken into four main steps: fetch, decode, execute,
and store. Fetching is the process of getting instructions from some location in memory, decoding is translating
those instructions into something the CPU can directly understand, executing is actually following the given

instructions, and storing is saving the result of the
execution somewhere for later access. CPUs go
through this overall process many, many times.
CPUs are organized into cores, or parts of the
CPU that can independently process instructions.
Early CPUs only had one core, however, today’s
computers often have multiple; you’ll often find
computers that advertise dual and quad-core
processors. Each core can only run one program
at a time. For example, if you only have one wash-
ing machine, you can only run one load of laundry
at a time. If you have multiple loads of laundry,
you would have to wait until the previous load is
finished before washing the next. Having multiple
cores is like having multiple washing machines. By
leveraging multiple cores within a CPU, comput-
ers are able to multitask and run multiple things
at once. In addition to having multiple physi-
cal cores, CPUs can utilize a technology called
hyperthreading. Hyperthreading allows a single
physical core to act as two individual cores. These
new cores are known as virtual cores because

they aren’t actually cores, but computer software treats them as if they are. Virtual cores can be used to speed
up programs, however they are not as advantageous as physical cores.

This is CS50.© 2018

SoC

CS50

CPUs do not work alone. In order for CPUs to work with other things, CPUs are usually connected to a moth-
erboard, the main circuit board that connects all of a computer’s hardware components. However, mother-
boards with its hardware components can be quite large. While modern desktops and laptops still have CPUs
connected to a larger motherboard, smaller devices like smartphones and tablets take advantage of some-
thing called system on a chip (SoC). A SoC is exactly what it sounds like: it is an entire system on a single
chip. In a SoC, the CPU is fully integrated with memory, GPUs, and more on a single chip. You can think of
it as fully functional computer in a tiny, tiny box. SoCs are significantly smaller and require less power than
traditional CPUs, but there is a tradeoff. By nature of having a tightly integrated unit, SoCs are inflexible and
cannot be customized or upgraded. In other words, if part of the SoC breaks, the whole things breaks, and
there is no way to improve or replace any of its components.

CPU

memory
store

exectute decode

fetch

Key Terms

• CSS
• attribute-value
• ID
• class

Overview
Cascading Style Sheets (CSS) is a language used on the Internet to style web pages.
While HTML describes the structure of a web page, CSS determines text alignment,
the size of various elements, the color of various elements, and how HTML elements
appear as a window is resized, amongst other things. There are also several different
ways of incorporating CSS into a web page.

This is CS50.© 2018

The Style Attribute
CSS can be included directly into HTML using the style HTML attribute in any
HTML tag. CSS takes the format of attribute-value pairs, where each CSS
attribute is followed by a colon, followed by its value (multiple attribute-value
pairs can be separated by semicolons). In the example here, we've included
CSS directly in this <p> tag. The CSS attribute font-size is set to 28px. As a re-
sult, when the HTML is displayed in a web browser, the paragraph will appear
in 28-point font.

Note that there is a distinction between HTML attributes and CSS attributes. style is the name of an HTML at-
tribute, while font-size is an example of a CSS attribute. There are many different CSS tags. Common ones for
styling text include: color, which sets the color of the text; text-align, which sets the text alignment (centered
or left-aligned, for example); and font, which sets the font for the text.

<p style="font-size:28px;">
 This is a paragraph.
</p>

Factored CSS
A third way to style with CSS is to store all the CSS in an entirely separate file. If the all of the CSS that would
be inside of <style> tags is stored in a document (typically one that ends with .css), then that file can just be
imported into an HTML document. We can do this by including a <link> tag in the head element of the HTML
document. For instance, by including a line like <link href="style.css" rel="stylesheet" />, we can add an
external CSS document to the HTML document and know that the appropriate styling will appear.

By putting all of the overlapping CSS code into one file, we remove unneeded repetition and redundancy from
our HTML files. We also make changing the styling of multiple HTML documents more efficient since we would
only need to update the one CSS document and then those HTML documents would be automatically re-styled.
In these ways, factoring out CSS into a separate document can be particularly advantageous when dealing with
multiple different HTML documents that use the same styling.

The Style Tag
CSS can also be located inside of a style element, usually located in the
head section of an HTML document. Within the style tags, we first need
to specify what the styling should apply to. This could be the name of a
type of element (e.g. p), or it could be an ID or class of an HTML element.
When determining whether to use an ID or a class, you can think of how
we use the words in an everyday context. An ID is typically unique to a
user so it should be used to style only one element. A class meanwhile is
a group of students so it should be used to style multiple elements that
have something in common. To apply styling to an ID, the ID should be ref-
erenced with a # symbol followed by its name. To apply styling to a class,
the ID should be referenced with a . followed by the name of that class.

After specifying what their styling should apply to, CSS attribute-value
pairs can be included within curly braces, separated by semicolons. In the
example at left, the CSS specifies that all p elements should have font size
28. Styling CSS in this manner can be advantageous if the styling applies
to multiple different HTML elements, since then we don’t repeat the same
CSS.

<!DOCTYPE html>
<html>
 <head>
 <title>Page</title>
 <style>
 p
 {
 font-size: 28px;
 }
 </style>
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

CS50 CSS

Cybersecurity
Key Terms

• cyberattacks
• cybersecurity
• phishing
• two-factor
 authentication
• SSL
• TLS

Overview
The Internet is full of security threats. One significant threat is the threat of cyberat-
tacks, where hackers attempt to target computer systems and networks for malicious
purposes. Cybersecurity refers to systems and practices that web sites and users can
employ in order to better protect themselves against cyber threats. Users can help to
protect themselves against cyber threats through a variety of means, including choos-
ing more secure passwords and being mindful of spam email.

Passwords
Hackers can attempt to obtain passwords in various ways. One way is to try submitting millions of possible us-
ername and password combinations until one is successful. This is why choosing a longer and harder to predict
password can improve security. Hackers may also attempt phishing attacks, where they send emails to users
pretending to be a legitimate company and ask users to click on a link that asks for a password or other sensi-
tive information.

Some services (including Google and Facebook) offer two-factor authentication as a means of combating pos-
sible password theft. Two-factor authentication requires two types of authentication that are inherently differ-
ent, one factor would be a username and password, while the other factor can take the form a verification code
sent via text to your phone or a security question or SecurID, which was a physical device that would generate
a random 6-digit integer. Thus a user needs both their password and a secondary device in order to be able to
login successfully. However, there is a tradeoff in convenience: if your phone is lost, or do not have access to your
phone then you may be unable to access your account.

This is CS50.© 2018

Website Security
HTTPS (with the “S” standing for “Secure”) is a protocol
for communication across the internet that combines
HTTP and a technology called Secure Sockets Layer
(SSL). Websites that use SSL each have a certificate,
which is distributed to users who are trying to access
the website. The certificate secures the connection
between the server and the individual and also contains
a public encryption key, which tells web browsers how
to encrypt requests that are sent to the web server. The
web server has another key, the private key, which can
decrypt the encrypted requests. As a result, when a
user sends an encrypted request to a web server using
SSL, the information is more secure. You can generally
tell which websites are using this technology by noting
whether or not their URLs begin with https://

Today, a technology called Transport Layer Security
(TLS) is more commonly used, but it is just an updated
and improved version of SSL.

Other Cyberattacks
Hackers use several other techniques to perform cyberattacks. In a man-in-the-middle attack, a malicious piece
of equipment (like a router or DNS server) in between a user and a web server can replace any occurence of
https:// with http:// in links and redirects. The result is that an adversary can return pages to a user that look
like the correct website, but actually are not.

Session hijacking is another cyberattack technique, wherein an adversary monitors network traffic for cookies,
and uses the cookie in the adversary's own HTTP headers, tricking a web server into thinking that the adversary
is someone else.

CS50

web browser

encrypted
web request

public
encryption key

web server

private decryption key

Data Types

Key Terms

• statically-typed
• dynamically-
 typed
• native
• qualifiers

Overview
Unlike many modern programming languages, C is a statically-typed language; it
requires that every time you declare a variable, that you specify the data type of that
variable. Many modern languages are dynamically-typed: at runtime, the program fig-
ures out the type of all the variables in the program. There are several different primi-
tive (or basic) data types that are built in to C, and several more that are offered by the
CS50 Library.

Native Types
C's native data types are the data types built into the programming language. An int is a data type which rep-
resents an integer: its value could be a positive or negative whole number, or zero. Numbers like 5, 28, -3, and 0
can be represented as ints, but numbers like 2.8, 5.124, and -8.6 cannot. When an int is declared, the computer
allocates 4 bytes worth of space for it. Since 4 bytes is 32 bits, this means that there are 232 (more than 4 billion)
possible integers that can be represented as an int: in the range from -231 to (231 - 1).

What if you need to store an integer outside of this range? C also includes qualifiers, which are keywords that
can be added in front of type names to cause changes to the type. One such qualifier is the unsigned qualifier,
which designates a type to be not negative. As a result, an unsigned int, while still 4 bytes in size, doesn't need
to include the negative numbers in its range of possible values. An unsigned int can therefore take on a value in
the range 0 to 232 - 1.

Another qualifier is the long qualifier, which allocates more bytes to the variable, allowing it to store more values.
The long long integer (denoted by the type long long) is an integer which uses 8 bytes of storage instead of 4,
allowing numbers in the range from -263 to (263 - 1).

In addition to ints, C also has several other native data types. A char is a data type which represents a character
of text. A char in C is surrounded by single quotation marks. Examples of possible char values include lowercase
letters like 'a', uppercase letters like 'Z', symbols like the exclamation point '!', or even the newline character '\n',
which counts as a single character.

To store numbers that isn't a whole number, C has a type called »��� (short for floating-point), which uses 4
bytes to store a decimal value like 2.8 or 3.14. C also has a native type called double, which also stores decimal
values but does so using 8 bytes instead of 4.

This is CS50.© 2018

Data Type Native? Sample Values

char

Size

int

µRDW

GRXEOH

ORQJ�ORQJ

ERRO

VWULQJ

<HV

<HV

<HV

<HV

<HV

1R

1R

5, 28, -3, 0 ��E\WHV

'a', 'Z', '?', '\n' ��E\WH

3.14, 0.0, -28.56 ��E\WHV

3.14, 0.0, -28.56 ��E\WHV

5, 28, -3, 0 ��E\WHV

WUXH��IDOVH ��E\WH

"Hi", "This is CS50" ��RU���E\WHV

CS50 Library Types
The CS50 Library makes other types
available to you, so long as you remem-
ber to type #include <cs50.h> at the
start of your program. The bool type
(short for Boolean) stores one of only
two values: true or false.

The CS50 Library also defines a type
called string, which stores text.

C doesn't limit users to only using the
data types built into the programming
language. It also offers additional fea-
tures which allow the programmer to
define their own custom types to use in
programs.

CS50

This is CS50.© 2018

Key Terms

• DNS
• DHCP
• URL
• domain

Overview
There are two important systems in place to make sure that devices on the Internet use
IP addresses effectively. The first is the Domain Name System, or DNS, which is respon-
sible for converting the words that are typed into an address bar in a web browser like
Google Chrome or Safari into the corresponding IP address. The second is the Dynamic
Host Configuration Protocol, or DHCP, which helps assign each device an IP address.

DNS
Most people browsing the Internet don't type an IP address
in when they want to access a web page. Instead, they type
in a URL, a Uniform Resource Locator, which acts as a more
human-readable and memorable web address than an IP ad-
dress.

However, IP still requires the computer to know which IP ad-
dress it is trying to access. This is where DNS comes in. DNS
is responsible for taking the domain, which is just an identifier
like "google.com" or "facebook.com", and translating it into its
respective IP address(es).

When a user types a URL into a web browser, the computer
contacts a DNS server, which stores information about which
domain names map to which IP addresses. There are many
DNS servers, and not all of them will updated at the same
time when the mappings between domain names and their IP
addresses are changed. As a result, and because it takes time
for these changes in the DNS system to propagate through-
out all of the DNS servers on the Internet, DNS servers must
always communicate with one another about these updates.

Domains in DNS are organized in a tree-like hierarchy. There are a set of basic "top-level domains" (TLDs), which
appear at the ends of many familiar websites. Two hierarchies exist at this level: organizational and geographic.
Amongst the top-level organizational domains are com, edu, gov, net, org, among others. The geographic do-
mains are two-letter country codes (such as uk, es, fr, ar).

Website URLs must branch off from one of these top-level domains. For instance, "google.com" branches off of
the "com" top-level domain. And “google.co.uk” branches off both the “com” organizational domain and the “uk”
geographic domain. Some websites, like "images.google.com" and "maps.google.com", branch even further and
are known as subdomains.

Root

com net

google facebook cs50

images maps cdn

DNS Hierarchy

DHCP
Computers, and the humans that use them, need a system for allocating these IP addresses. At one point in the
Internet's history, a human network administrator was responsible for this, assigning IP addresses to comput-
ers manually. Nowadays, the Dynamic Host Configuration Protocol, or DHCP, can do this automatically. When
computers connect to a network, they will connect to a DHCP server. The DHCP server then accesses a pool of
available IP addresses and assigns each computer on the network a unique one.

So, using DHCP and DNS, devices on the Internet are able to receive their own IP address and determine which
IP address corresponds to the website that a user is trying to visit. These systems are crucial, allowing the Inter-
net Protocol to effectively facilitate communication across the Internet.

CS50 DNS and DHCP

Exit Codes

Key Terms

• exit code
• input
 validation

Overview
You may have noticed that the main function definition returns an int, but in the past
we haven't been returning any value at the end of the main function. By default, if no
return value is specified in the main function, the compiler will automatically assume
that the main function returns 0. The value that the main function returns is referred to
as the program's exit code. As your programs become longer and more complicated,
exit codes can be a valuable tool.

Using Exit Codes
By convention, if a program completed successfully with-
out any problems, then it should return with an exit code
of 0. That's why the compiler assumes that if no return
statement is provided at the end of main, the program
should return 0. You could, however, explicitly specify re-
turn 0 at the end of a program.

Any non-zero exit code (commonly 1 or -1) conventionally
means that there was some sort of error during the pro-
gram's executing that prevented the program from com-
pleting successfully.

One common use of exit codes is during input validation:
when the program checks to make sure that the inputs
provided by the user are valid. For instance, if a program
expects two command line arguments, but only receives
one, it might return a non-zero exit code to signal an error.

Take the above program, which takes (in addition to the program's name) a command line argument specify-
ing the user's name. The program then says hello to the user.

Upon starting the main function, the program checks to see whether argc is 2. If it is, then the user's input is
valid: the program can say hello, and successfully return with exit code 0.

On the other hand, if the user didn't provide the correct input values (say, by not providing enough command
line arguments, or by providing too many), then argc would not be equal to 2.

The program would then execute the else block, which returns the number 1 as an exit code, indicating that
there was an error in the program's execution.

This is CS50.© 2018

Debugging
If you run programs normally from the command line, you won't actually see the return values that the main
function returns. However, many debugging tools, which are programs designed for helping programmers find
sources of problems in their code, will allow you to see the exit code with which the main function exited.

Knowing the exit code can be a valuable tool for determining why a program failed during the debugging
process. In larger programs, which may include many instances of error checking and input validation, the pro-
gram may return a different exit code for each error.

If the program fails, knowing which status code the program exited with can help determine what went wrong.

 1 #include <cs50.h>
 2 #include <stdio.h>
 3
 4 int main(int argc, string argv[])
 5 {
 6 if (argc == 2)
 7 {
 8 printf("hello, %s\n", argv[1]);
 9 return 0;
10 }
11 else
12 {
13 return 1;
14 }
15 }

CS50

Key Terms

• file
• file pointer
• file extension
• I/O

Overview
Interacting with data stored on a computer’s disk is integral to many programs. Data
storage allows information to be used after the lifetime of a program without the
hassle of inputting it again. Data is stored on a disk in the form of files, collections of
data organized in such a way that the computer can understand. Files store a variety
of media, including audio, text, movies, pictures, and more.

Remember that all files are fundamentally just bits – 0s and 1s – that have been organized in a specific way. File
types (a “video file,” for instance) are merely abstractions of these bits. Likewise, file extensions, such as .txt, .c, or
.mp3, merely act as references for computer programs that tell them what they should expect to find inside the
file and what they should use the file for. So when a computer sees a certain extension, it knows that the corre-
sponding file (i.e., its 0s and 1s) is formatted in a specific way and should be opened with an appropriate program.

This is CS50.© 2018

Interacting With Files
The “I/O” in “file I/O” stands for input/output. Thus, file I/O refers to the process of retrieving information from
and storing information in files. In general, the file I/O process, broadly, consists of a few steps. First, you must
open the file, specifying the ways in which the file can be manipulated. After that, the file’s data is free to be ma-
nipulated in any of the specified ways. Finally, the file must be closed!

Diving Into Code
Files are interacted with in C via “file pointers,” i.e. references to
files, which in code are the FILE * data type. New file references
are usually initialized with the library function fopen, which takes
two arguments (both strings): the filename and the mode for
which the file should be opened.

There are many different ways to manipulate files. The most
important of these are reading (“r”), writing (“w”), and append-
ing (“a”), which is just like writing but done directly at the end of
the file. To write to a file, we can use fprintf, specifying the file
pointer to which we want to write and also what it is we want to
write. Other functions, like fgetc, let us read from a file, getting
characters, strings, and the like from the file pointer. Since there
are many methods for writing and reading various types of data,
we need to make sure to use the one which best suits our needs!

ɨ���ŵŵ����������º��
2 FILE *fp = fopen(“document.txt”, “w”);
ɪ����������ſ��ř�ũ�����ř������ŠɎ�ŪƀŚ
ɫ���������ſ��ƀŚ
5
ɭ���ŵŵ�����������º��
7 fp = fopen(“document.txt”, “r”);
8 char c = fgetc(fp);
ɰ���������ſ��Šʰ���	ƀ
10 {
11 printf(“%c”, c);
12 c = fgetc(fp);
13 }
ɨɫ��������ſ��ƀŚ

Error Checking
It’s also very important to understand and check for po-
tential errors that might occur in the file I/O process. For
instance, unlike the previous example, we should always
make sure fopen was successful.

Take a look at the code at right and note the error check-
ing to ensure fopen was indeed successful. Here, the mode
specified was writing, or “w,” so failures could occur if the
file exists and it is corrupted. Had the mode been reading,
or “r” (as in line 7 of the former code), errors could have
resulted from trying to read from a nonexistent file. Also,
not having the appropriate permission to open a file (to read from or to write to) will also return an error.

ɨ��ŵŵ����������º��
2 FILE *fp = fopen(“document.txt”, “w”);
ɪ��ŵŵ������������º��������������������������
4 if (fp == NULL)
5 {
ɭ�������������ſ������ř�ũ��������������º��ŜɎ�ŪƀŚ
7 return 1;
8 }
9 // continue...

CS50 File I/O

Functions
Key Terms

• functions
• abstraction
• return type
• side-effect
• return value
• scope

Overview
Functions are reusable sections of code that serve a particular purpose. Functions can
take inputs and outputs, and can be reused across programs. Organizing programs into
functions helps to organize and simplify code. This is an example of abstraction; after
you've written a function, you can use the function without having to worry about the
details of how the function is implemented. Because of abstraction, others can use (or
"call") the function without knowing its lower-level details as well.

Function Syntax
All programs you've written in C already have one function: main. However, pro-
grams in C can have more functions as well. The program on the left defines a
new function named say_hi().

The first line of a function requires three parts: first, the function's return type,
which is the data type of the function's output that is "returned" to where the
function was called. If the function does not return a value, the return type is
void. Second, the function's name; this cannot include spaces and cannot be one
of C's existing keywords. Third, in parentheses, the function's parameters, also
known as arguments. These are the function's inputs (if there are none, use void).
After this first line (known as the declaration line), the code defining the function
itself is enclosed in curly braces.

In the example above, the say_hi() function causes "Hi\n" to be printed to the screen. This is called a side-ef-
fect, which is something a function does outside of its scope that is not returning a value. The say_hi() function
is then called twice in the main function. Functions are called by writing the function's name, followed by any
arguments in parentheses, followed by a semicolon. When the program is run, "Hi\n" prints to the screen twice.

This is CS50.© 2018

Scope
Variables that are defined inside of functions or in the list of function parameters have local scope, meaning
those variables only exist inside of the function itself and have no meaning elsewhere. In the example above, if
you were to try to reference the variable x inside of the main function, the compiler would give you an error; the
main function doesn't know what x means, only square does. Likewise, any variables defined inside of main can't
be accessed from inside of square.

If variables are defined outside of any functions, they have global scope instead of local scope. This means they
can be accessed from any of the functions in the file. However, global variables are more difficult to keep track of
and can be changed from any location in the program. Because global variables have global scope, that variable
name cannot be reused in other parts of your program.

Inputs and Outputs
The example on the right shows a function, square, which takes input and
output. square takes one input: an integer called x. It also returns an int
back to the where the function is called. Line 5 of the function specifies
the function's return value, denoted by the word return. In this case, the
square function returns the input value x multiplied by itself. When the re-
turn line is reached, the function is exited and the return value is returned
to where the function was initially called.
Now that we've written this function, we can use square elsewhere in our
program anytime we want to square a number. In the main function on
the right, the square function is called three times: each time, the function
is evaluated and returns the appropriate return value in the place of the
function. So printf("%i\n, square(2)) has the equivalent effect of writ-
ing printf("%i\n", 2 * 2) or printf("%i\n", 4).

 1 #include <stdio.h>
 2
 3 void say_hi(void)
 4 {
 5 printf("Hi!\n");
 6 }
 7
 8 int main(void)
 9 {
10 say_hi();
11 say_hi();
12 }

 1 #include <stdio.h>
 2
 3 int square(int x)
 4 {
 5 return x * x;
 6 }
 7
 8 int main(void)
 9 {
10 printf("%i\n", square(2));
11 printf("%i\n", square(4));
12 printf("%i\n", square(8));
13 }

CS50

This is CS50.© 2018

Key Terms

• binary
• hexadecimal
• RGB values

Overview
Recall that our computers break everything from ASCII symbols to source code down
into combinations of 0s and 1s (binary). Those 0s and 1s are not that efficient when it
comes to expressing large numbers. To express the decimal number 15, for instance,
we need four place values in binary: 1 1 1 1. Because four digits of binary can represent
16 values, computer scientists settled on hexadecimal, a number system of base 16, to
represent those larger numbers.

In the decimal system (base 10), we have ten digits, 0-9, and each place value represents the next power of 10.
So the nth place value can be calculated by taking 10

n-1
, like in binary (base 2), where we could calculate the nth

place value by taking 2
n-1

.

Similarly, in hexadecimal (base 16), we use 0-9 for the first ten digits and the letters A-F for the remaining six.
We can think of A as 10, B as 11, and so forth. As you might guess, hexadecimal’s place values are based on pow-
ers of 16. Note that all the hexadecimal place values are found in binary, albeit more spread out. This makes sense
when we remember that 24 = 16 and that what takes 4 digits to express in binary can be expressed in 1 digit in
hexadecimal.

To convert numbers directly from binary to hexadecimal, simply block off the binary number into chunks of four
digits and express what they represent as a single hexadecimal digit. For example, 0 0 0 0 in binary would be a
0 in hexadecimal, and a 1 1 1 1 in binary would be converted into an F (which represents 15) in hexadecimal. This
optimization allows us to represent much larger numbers using fewer characters.

Hex Colors
One application of the hexadecimal system is the representation of colors. As you may know, all colors are made
up of varying levels of red, green, and blue. We refer to these as the RGB values. Each of the three colors can
have a value between 0 and 255 (162-1), which means we need to be able to represent 16,777,216 different colors.
And using the hexadecimal number system, we are able to do this in only 6 digits! Imagine using the binary sys-
tem to express that many colors. It would take 4 times as many digits.

HexadecimalCS50

1s

Decimal System

10s100s

3 1 9

(3 x 100)

300 + 10 + 9
319

(1 x 10)+ (9 x 1)+

1s

Binary System

2s4s

1 1 1

(1 x 4) (1 x 2)+ (1 x 1)+

1s

Hexadecimal System

16s256s

1 3 F

(1 x 256)

256 + 48 + 15
319

(3 x 16)+ (15 x 1)+

8s16s32s

1 1 1

(1 x 32) (1 x 16)+ (1 x 8)+

64s128s256s

1 0 0

(1 x 256)

256+ 0 + 0 + 32 + 16 + 8 + 4 + 2 + 1
 319

(0 x 128)+ (0 x 64)+ + +

Hexadecimal

How Computers Work
Key Terms

• hardware
• software
• CPU
• RAM
• HDD
• SSD
• peripherals
• OS

Overview
Computers were invented by many teams of people, all working on particular parts.
Like most machines, a computer is made of separate pieces with specific functions
that all work together. The physical pieces of a computer are called hardware, and the
virtual pieces of a computer are called software. Within both hardware and software,
there are individual components, and within those components, there are even more
components. This pattern of getting smaller and going lower into the innerworkings of
a computer continues until the level of transistors and binary. However, thanks to the
work of computer scientists, we can leverage these devices without worrying about
low level details.

This is CS50.© 2018

Hardware components communicate with software components through a piece of low level software called the
Operating System, or OS. The OS is the computer’s manager; it’s in charge of translating input from your key-
board and mouse, displaying information on the screen, and moving things around in memory. It provides you
with the user interface that you’re familiar with and decides how to delegate hardware resources for different
software applications. It is through the OS that software applications are able to work with the various hardware
components. Because the OS is loaded into RAM when you turn on your computer, you are able to use a com-
puter and even program a computer without directly interacting with the internal hardware yourself.

Engineers can build software applications like word processors and web browsers by writing programs that
interacts with the OS. By building on top of what others have done, software can be created directly on a com-
puter using high level tools like code, enabling engineers to develop new and improved applications very quickly.

Hardware
Hardware consists of all of the physical components of a
computer. On the outside of a computer, most computers
have a keyboard, a mouse, and/or a trackpad, which are used
to interact with a computer by inputting information. Com-
puters also have a monitor, or a screen, to output informa-
tion through computer-generated images. On the inside of a
computer, the main components are the CPU and memory.
The CPU, or processor, is responsible for performing calcula-
tions and following instructions. The CPU works tightly with
memory to fetch instructions and store calculated results. To
fulfill different needs, there are a few types of memory within a
computer: RAM and hard disk drives. RAM, or Random Access
Memory, is the short-term memory that software can use to
store data quickly and temporarily. In contrast, hard disk drives
(HDD) store memory more permanently, but are much slow-
er than RAM. Other drives, known as solid state drives (SSD)
also store data like hard disk drives, but not without their own
trade offs: although they are significantly faster at reading and
writing data than HDDs, they are much more expensive.

Not all hardware that’s used in computing is inside the com-
puter. Often, devices that are not a part of the computer itself
will connect to and work with computers. These devices are
known as peripherals. Some peripherals include external
speakers, flash drives, and drawing tablets. To connect these
peripherals to the computer, computers use physical ports,
such as HDMI and Universal Serial Bus (USB).

CS50

Software

CPU
RAM HDD

OS

software

peripheral

monitor

keyboard

This is CS50.© 2018

Key Terms

• HTML
• element
• tag
• DOM
• attribute

Overview
HyperText Markup Language, or HTML, is the language that describes the contents of
web pages. It's not a programming language (it doesn't contain loops, if statements,
etc.), but it does allow a web designer to decide how a web page is laid out. When a
user requests a web page, the web server will send the contents of that page in HTML.
The web browser interprets this HTML and displays the web page to the user.

Common Tags
HTML offers many tags that can be used to format a web page. The ones in our example – html, head, title, and
body – are very common and will likely appear in every web page we write. Other tags may appear in particular
situations. For example, headings in web pages are denoted by the tags <h1> through <h6>, where <h1> is the
largest, main heading, and each subsequent one is smaller. The <p> tag denotes a paragraph.

HTML Basics
To the right is a basic, sample HTML web page. The first line clarifies
that the document is an HTML document (specifically, an HTML5 doc-
ument). After that, HTML code is organized as a series of nested ele-
ments. Each element begins and ends with a tag that indicates what
type of element it is. Anything between those tags is the contents of
the element. In our example, the outermost element is the html element,
since it is enclosed with <html> at the start, and </html> at the very end.
Everything in between those two tags is part of the html element.

In general, opening tags will take the form <tagname> and closing tags
will take the form </tagname>. Inside of our html element are two other
elements: head and body. The head element contains information about
the webpage that isn't in the body of the web page itself. For instance, the head element here contains a title
element, which sets the title of the webpage to hello, world. Inside of the body element, which defines what's
actually in the main content area of the webpage, is just the word Hello!

You can think of the structure of an HTML document as a tree-like hierarchy. The html element is at the root of
the tree. Branching off of it are the head and body tags. Branching off of the head tag is the title tag, and so
forth. This model of viewing an HTML document as a tree is known as the Document Object Model, or DOM.

<!DOCTYPE html>

<html>
 <head>
 <title>hello, world</title>
 </head>
 <body>
 Hello!
 </body>
</html>

Element Attributes
In addition to having a name, HTML elements can also have attributes, which provide additional information
about them. For instance, the (image) tag takes an attribute called src, which specifies the address for, or
where to find, an image. So a tag like would place the image cat.jpg on the webpage, so
long as cat.jpg is in the same directory as the HTML document.

To create links to other pages in HTML, we use the <a> tag. The <a> tag takes an attribute called href, which
specifies what web page the link should link to. As a result, HTML like Click
Here would create a link labeled "Click Here" which, when clicked, would take the user to Google.

All HTML elements can also have an id attribute, which must be unique. The id can help to identify particular
elements in the webpage. HTML elements can also have a class attribute, which does not have to be unique and
can also be used to identify HTML elements. We'll see the utility of the id and class attributes when we begin
dealing more with CSS and JavaScript.

CS50 HTML

This is CS50.© 2018

Key Terms

• HTTP
• client
• server
• GET
• POST
• Status Code

Overview
The Hypertext Transfer Protocol, or HTTP, is a protocol for how web browsers com-
municate with web servers. When a user wishes to visit a webpage, their web browser
(which may be referred to as the client) must request the contents of the web page
from a web server. In response, the web server must interpret the request and send
the requested page back to the client. HTTP facilitates this process and sets a standard
way for these requests to be sent and received.

Status Codes
When a web server receives an HTTP request from a client, the
server must send a response back to the client. Servers indicate the
results of requests with status codes, which they send back to the
client.

For instance, if a client requests a web page, the server should send
back the contents of that web page. If the server has the page that
the user is looking for and is able to respond with it successfully,
then the server sends the status code 200, which means that the re-
quest was handled successfully. But if the user requests a page that
doesn’t exist on the web server, then the server responds with status
code 404, which stands for “Not Found.”

Other types of errors are also represented by status codes. For
example, if the user tries to access a web page that the user does
not have permission to access, then a web server will respond with
status code 403, which means “Forbidden.” If an error occurs in the
web server while trying to process a user’s request, then the server
will frequently respond with status code 500, which stands for an
“Internal Server Error.”

GET and POST Requests
When a user requests a web page by typing a URL into their web browser, the
web browser sends a particular type of HTTP request called a GET Request. The
text of a GET request begins with the word GET, to indicate the request type.
Following the word GET is a path indicating which web page the user is request-
ing, called the “Request URI,” where URI stands for Uniform Resource Identifier.

Following GET is /, which indicates the root of the web page, such as when you type a URL like google.com/ or
facebook.com/ without specifying anything after the /. Finally, the first line of the GET request will end with the
version of the HTTP protocol that the request is using, generally 1.1. The next line specifies the “Host,” which is
the domain name which the user is requesting a page from.

Web browsers can also submit a different type of HTTP request, called a POST request, which is meant for trans-
mitting data from the client to the web server, such as when a user fills out an online form. In this case, a client
would have asked the server for the blank form via a GET request. Once submitted, the filled out form would be
sent back to the server via a POST request.

GET / HTTP/1.1
Host: www.google.com

Status Code Meaning

200

301

302

403

404

500

OK

Moved
Permanently

Found

Forbidden

Not Found

Internal Server
Error

HTTP/1.1 200 OK
Content-Type: text/html

CS50 HTTP

Key Terms

• pixel
• hexadecimal
• header
• lossy
• lossless

Overview
From social media to cancer screenings, newspapers to comic books, images are im-
portant in our lives. Images are stored as files, a series of bytes, just like the programs,
word docs, and text files you’re used to writing. Common image file formats include
bitmaps (.bmp), JPGs (.jpg), PNGs (.png), TIFFs (.tiff), and GIFs (.gif).

Bitmaps
Our entire screen is composed of pixels, little dots with programma-
ble color and brightness values. A bitmap describes a pattern of all the
pixel values that make up an image: when our screen’s pixels become
those values, the image will appear. A bitmap takes some number of
bits per pixel (bpp). More bits can be used to create a more detailed
color palette. Back when screens were black and white, just a single bit
was used per pixel, with 0 = black, 1 = white, as shown at left.

This is CS50.© 2018

Bitmap Headers
Bitmaps also have a header – a few bytes at the beginning of the file
that tell the display program how to interpret the bits in that file. For
the common .bmp Microsoft file extension, we use the struct at right
to specify its header. These fields specify the size of the image in
bytes, its width and height in pixels, and more. Having this information
bundled together ensures that our display program knows exactly
how to format the image.

RGB Triples
The bitmaps we’ve worked with contain three bytes for each pixel in
a color image. Each byte specifies a number between 0 and 255, or, in
hexadecimal, 0x00 to 0xff. These three numbers detail how much red,
green, and blue to put in that pixel. We can make sense of how this
information comes together by thinking about painting, where mixing
different combinations of just a few colors can produce many, many
different shades. In this case, red, green, and blue can be combined to
make the entire rainbow with varying levels of brightness.

Other Image File Formats
Do we need to store all of the information corresponding to every pixel
in our image file? After all, many images feature a lot of repetition and
redundancy (see what we did there?). Is there a way to encode this repe-
tition to create smaller file sizes?

The answer is, typically, yes. Notice the four horizontal repetitions of 0
and 1, respectively, in the example at right. In the file below it, we encod-
ed (pixel value, repeat number) pairs. What we’ve just done here is
compressed the original file, resulting in a new file of smaller size.

There are two main types of file compression: lossy and lossless. In lossy file compression, files, such as JPGs, are
compressed in such a way that data is lost, meaning that the original file cannot be completely recovered. On
the other hand, in lossless compression, which is used with PNGs and GIFs, no data is lost and the original file
can be exactly reconstructed. The compression in the example above falls into this category.

0 0 0 0

1 1 1 1

0 4

1 4

GIF compression

1 1 0 0

1 0 1 1

0 1 0 1

0 1 1 1

0 1 0 1

0 1 1 0

1 0 1 1

1 1 0 0

0 0 1 1

1 1 0 1

1 0 1 0

1 1 1 0

1 0 1 0

0 1 1 0

1 1 0 1

0 0 1 1

 1 typedef struct
 2 {
 3 DWORD biSize;
 4 LONG biWidth;
 5 LONG biHeight;

 (...)

 14 } __attribute__((__packed__))
 15 BITMAPINFOHEADER;

CS50 Images

Insertion Sort

Key Terms

• insertion sort
• array
• pseudocode

Overview
Insertion sort is yet another algorithm to sort arrays, but this time it does not require
multiple iterations over the array. Like usual, optimizations usually force the program-
mer to sacrifice something else. However these sacrifices are nearly negligible, in the
case of insertion sort, when the array is small or the array is nearly sorted. Similar to
selection sort, the array of elements will be split into two parts: a sorted portion and an
unsorted portion.

Implementation
In the case of having two elements in the array, the imple-
mentation is relatively simple. Consider the first element to
be automatically in the sorted portion of the list. Look at
the next element in the array, and determine where it fits
in the sorted list. This can be applied to a larger array with
the following pseudocode:

for each unsorted element, n, in the array

 determine where in the sorted portion of the
 array to insert n

 shift sorted elements rightwards as necessary
 to make room for n

 insert n into sorted portion of the list

When this is implemented on the example array, the pro-
gram would start at array[1], which is 1, since an array of
size one (array[0]) is already sorted. 5 would get shifted
over to the right, and 1 would be moved to array[0]. Next,
the program looks at 6. 6 is greater than 5 so no elements
need to be shifted to make room for it. And so on and so
forth. Eventually with this procedure, the entire array will
be sorted.

This is CS50.© 2018

Sorted Arrays
There is no guarantee that after any step in the implementation, any elements are in the correct location in the ar-
ray. Even if an element did happen to be in its correct location in the initial array, it is likely that it would be moved
to a different location within the sorted array before it would be shuffled back into its final location. Also note
that in insertion sort, all the elements to the right of the newest element in the sorted list have to be shifted over
one space. So while it may seem like insertion sort involves n steps, we are increasing the amount of times an ele-
ment is being moved because elements are being shifted over to accomodate new elements rather than just be-
ing swapped. This is, however, dependent on the order of the initial array. It is also worth considering that sorting
algorithms need to address cases in which two elements are equal. When dealing with few unique elements the
key is just to be consistent. If, in the implementation of insertion sort, there was a line that checked if the current
element was equal to an element in the sorted array, it should always have the same outcome, whether it is to the
right or the left of that element is irrelevant.

CS50

61 42 35

65 42 31

65 42 31

Step-by-step process for
insertion sort

52 46 31

42 65 31

32 54 61

This is CS50.© 2018

CS50 Internet Basics
Key Terms

• IP address
• access point
• DHCP
• DNS
• URL
• TCP
• HTTP

Overview
Programming isn't just limited to writing programs that run on the command line. Code
can also be written for web browsers and and shared on the Internet. To be able to
share information anywhere, a standard set of rules for sending, receiving, and inter-
preting the information must be set. Because the Internet connects people and com-
puters from all over the world, there are many different systems and protocols in place
that work together in order to allow people to use the Internet effectively. Understand-
ing what these are and how they work will enhance your understanding of the Internet
and computer science overall.

IP Addresses
Devices on the Internet are assigned an IP address (which stands for Internet Protocol) to help identify them
and allow them to be found by other devices also on the Internet. IP addresses take the form of #.#.#.#, where
each # is a number in the range of 0 to 255. This allows for about 4 billion possible IP addresses. Although this
may sound like a lot, there are far more devices on the Internet than that. This has led to some workarounds,
including assigning some devices private IP addresses that together share a single public IP address.

In the long term, however, the 32-bit IP address scheme (IPv4) we mostly use today will be replaced by a 128-bit
address scheme called IPv6. While IPv4 addresses take the form of 4 numbers, each representing an 8-bit value,
IPv6 addresses have 8 numbers – each representing a 16-bit value – in the form #:#:#:#:#:#:#:#.

When information is being sent across the Internet, IP addresses are used so that the Internet knows where the
information is being sent to and from. In this sense, it's very much like sending physical mail: information has a
both a mailing (to) and a return (from) address.

Several steps are involved in connecting a device to the Internet. For a wireless device (like a laptop or cell
phone), it must first connect wirelessly to an access point (known as an AP). For many consumers, this access
point takes the form of a home router. This access point is connected to a switch, which is connected to another
router, which can then connect to the rest of the Internet.

Two other servers are particularly important for connecting to the Internet: DHCP and DNS. DHCP, which stands
for Dynamic Host Configuration Protocol, is responsible for assigning computers IP addresses. Early in the Inter-
net Age, network administrators had to manually assign IP addresses to all computers, but thankfully, DHCP now
automates this process.

It would be very difficult if everyone using the Internet had to remember each IP address for every website they
wanted to visit. Instead, most people type a text-based address (such as “google.com”) into their web browsers
to access a page. This text-based address is called a URL, or Uniform Resource Locator. But how do our com-
puters know what IP addresses to take us to based on our text input?

This is where DNS, which stands for Domain Name System, comes in. The term DNS refers to servers that take
URLs and converts them to and from IP addresses. When a user types a URL into their web browser, DNS serv-
ers look up the URL and then determine which IP address that name refers to, relating this important informa-
tion back to the computer.

Several other protocols are involved in ensuring that communication on the Internet works effectively. TCP, the
Transmission Control Protocol, is responsible for guaranteeing the delivery of all data packets that are submit-
ted via the Internet. It also makes sure that these packets of information sent via the Internet know what service
they are meant for (web browsing, email, etc.). HTTP, the Hypertext Transfer Protocol, is another protocol which
helps web browsers communicate with server.

Connecting to the Internet

Other Protocols

This is CS50.© 2018

Key Terms

• Internet Protocol
• IP Address
• IPv6
• IPv4

Overview
The Internet Protocol is a protocol, or set of rules, that helps define how information
on the Internet is transmitted. Part of this protocol involves assigning each device on
the Internet an IP Address, which helps to identify that device on the Internet. IP has
gone through several different versions, the most recent of which is IPv6, which is in-
tended to replace the existing protocol, IPv4.

IPv4 and IPv6 Addresses
Under the IPv4 system, each IP address is composed of four numbers
separated by decimal points. Each number is a decimal number in the
range of 0 to 255 inclusive (8 bits of space). As a result, each IPv4 ad-
dress is 32 bits, which means there can be at most 232 addresses under
IPv4. This amounts to about 4.3 billion addresses total.

However, as the Internet has grown, 4.3 billion addresses is no longer
sustainable to support all of the devices that are trying to connect to the
Internet. As a result, the IPv6 standard was developed in order to add
more possible IP addresses.

Under IPv6, each IP address consists of eight numbers, separated by
semicolons. Each number is a 16-bit number (compared to the 8-bit
numbers used in IPv4). Instead of representing each number as a decimal,
IPv6 uses hexadecimal (16-bit) instead, in the range of 0000 to fffff.
Since each IPv6 address stores 128 bits (8 numbers * 16-bits), that means
that there are more than 340 billion billion billion billion possible IP ad-
dresses. This is significantly more addresses than are currently used, so
many IPv6 addresses currently include several 0s among their 8 compo-
nent numbers.

As a shorthand method, IPv6 addresses can be abbreviated by cutting off any leading 0s in front of hexadecimal
numbers and replacing multiple consecutive component 0s with a double colon (::).
For instance, the IP address 28aa:0000:0000:0000:0000:0000:0018:a5b2 could be abbreviated to just
28aa::18:a5b2 by removing leading 0s and replacing multiple consecutive 0s with double colons. Note that
there can only be one double colon per address in this abbreviated format.

Private IP Addresses
Not all IP addresses are accessible on the Internet at large. Some addresses, known as private IP addresses, are
set aside to be used within a particular local network. Other computers on the local network can communicate
with one another via their private IP addresses, but computers outside of the network don't have access to
them.

Often, devices with private IP addresses will share a single public IP address. This helps
reduce the number of public IP addresses that are needed under the IPv4 standard. Cer-
tain ranges of IPv4 addresses, such as those which take the form 10.#.#.#, 172.16.#.# -
172.31.#.#, or 192.168.#.#, are set aside to be used specifically for private IP addresses.

The IP address 127.0.0.1 is an IP address that connects to the same machine that the user
is currently using, rather than connecting to a different one. It is known as the loopback
address, or the “localhost.” In computers that use IPv6, this address is 0:0:0:0:0:0:0:1, or
::1. You know what they say, there’s no place like 127.0.0.1.

#.#.#.#
IPv4 Address

0-255

#:#:#:#:#:#:#:#
IPv6 Address

0000-ffff

CS50 IP Addresses

127.0.0.1

JavaScript

Key Terms

• JavaScript
• event
• anonymous

function
• jQuery

Overview
If you’ve seen websites with cool animations when you interact with them, it’s likely
that those features were written in JavaScript. Each programming language plays a
certain role in computer science, and JavaScript’s job is in the web browser. JavaS-
cript is a language used in web development to program the behavior of web pages.
Because JavaScript was created for this use, JavaScript has many features that other
languages such as Python, C, and Java do not have.

This is CS50.© 2018

CS50

Additional Resources
JavaScript is widely used among web developers, so there are many JavaScript resources available to make
coding more convenient and to expand the range of possibilities. One of these resources is a library called jQue-
ry. jQuery is a cross-platform JavaScript library that simplifies some of JavaScript’s syntax and includes some
additional helpful functions. It uses the $ symbol as a global variable to access jQuery. In addition to jQuery,
JavaScript has a plethora of resources available. Some of these resources include libraries of pre-built JavaScript
components and tools for data visualization. Because web development brings together so many technologies
and has such a big impact on how information is presented, there are constantly new resources being developed
around JavaScript. Part of web development is keeping up with these technologies and being able to adapt
quickly. Be sure to check out which resources could be useful for your next project!

JavaScript
JavaScript is a programming language used in web browsers to create dynamic web pages. Because JavaScript
runs in all major web browsers, it is universally supported and used in the majority of modern websites. JavaS-
cript is primarily used on the client-side of web applications, meaning the code is run on a user’s browser rather
than somewhere on a external server. This means that without additional HTML requests, JavaScript does not
have access to information on the server.

JavaScript works closely with HTML and CSS to create user interfaces for web applications. Javascript is written
within script tags of an HTML page and has many functions that allow for direct manipulation of HTML using the
DOM. Part of what makes JavaScript so powerful and dynamic is its focus on responding to events, or actions
from a user or other devices. An event-driven language is one that enables a program to act according to these
events. Some examples of events include mouse clicks, key presses, scrolling, or outputs from sensors. The job
of many JavaScript programs is to do something depending upon what the user does, and JavaScript provides

built-in features to support this kind of func-
tionality.

One of these features is unnamed functions, or
anonymous functions. Functions are named
so we can call them in various parts of our
program, but since JavaScript is event-driven,
many actions are only triggered by particular
events. In other words, it is common to have
functions that are only used once in a program.
Therefore, JavaScript allows us to create anon-
ymous functions. Unlike declared functions,
anonymous functions run immediately without
storing them in memory first. This simplifies
code, lets us assign functions as variables, and
allows us to pass functions around as argu-
ments in other functions. All of these features
simply make creating interactive and us-
er-friendly web pages more convenient.

event: on click of marker
action: show pop-up window with the first line of the
 location’s Wikipedia page

Cambridge, MA Cambridge, MA

Cambridge is a city in
Middlesex County, Massa-
chusetts, and part of the

Boston metropolitan area.

Libraries

Key Terms

• library
• header file

Overview
Libraries are shared collections of code that programmers can use to work with one
another. Libraries usually include functions that may be commonly used among pro-
grammers. For example, the C library string.h includes many useful premade functions
to manipulate strings (see below). By allowing us to use functions that others have
already written, libraries enable us to build off of the work of others and use their func-
tions in our own programs, instead of reinventing those functions ourselves.

Using Libraries
To use a functions from a library in C, remember to #include the header file (such as with #include <math.h>),
which defines the library's functions, at the top of your source code file. When compiling your code, you'll also
need to link the library so that the resulting object code knows how to execute the functions.

This is CS50.© 2018

Some Common C Library Functions
In ctype.h:
 isalnum() takes a char as input, and returns true if the character is alphanumeric and false otherwise
 isalpha() takes a char as input, and returns true if the character is alphabetic and false otherwise
 islower() takes a char as input, and returns true if the character is lowercase and false otherwise
 isupper() takes a char as input, and returns true if the character is uppercase and false otherwise
 tolower() takes a char as input, and returns the character converted to lowercase if possible. If it's not possible,
 it returns the original character unchanged.
 toupper() takes a char as input, and returns the character converted to uppercase if possible. If it's not
 possible, it returns the original character unchanged.

In math.h:
 ceil() takes a double as input, and returns the smallest integer that is not less than the input, as a double
 cos(), sin(), and tan() each take a double as input, and return the cosine, sine, or tangent of the input
 »���ſƀ takes a double as input, and returns the largest integer that is not greater than the input, as a double
 pow() takes two doubles as input, and returns the value of the first input raised to the second value power
 lround() takes a double as input, and returns a long int representing a rounded version of the number
 log(), log10(), and log2() take a double as input, and return the logarithm of the number (base e, base 10, and
 base 2, respectively)

In stdio.h:
 printf() takes a string as input, and prints it to standard output, displaying it on the screen

In stdlib.h:
 atoi() takes a string as input, and converts the string to an int if possible, returning the int
 rand() returns a pseudorandom integer, and will usually be seeded with srand() first

In string.h:
 strlen() takes a string as input, and returns the length of the string, not including the null terminator
 strcmp() takes two strings as input, and returns 0 if they are equal, less than 0 if the first string comes before
 the second, and greater than 0 if the first string comes after the second one
 strstr() takes two strings as input, and finds the first occurrence of the second string in the first.

There are many more functions defined in these libraries and other libraries, and it is often a good idea to ex-
plore the existing C libraries to see what functions are available to you so that you don't re-create code that you
could use library functions for instead. Check out reference.cs50.net for more information on C Library Func-
tions.

CS50

https://reference.cs50.net

Linear Search

Key Terms

• algorithm
• linear search
• element
• computational

complexity
• constant

Overview
There are many different algorithms that can be used to search through a given list.
One such algorithm is called linear search. This algorithm works by simply checking
every element in the list in order. It will start at the beginning of the list and increment
through the list until the desired element is found. In this way, linear search would
require checking every element before reaching the conclusion that the element does
not exist in the list.

(I´FLHQFLHV�DQG�,QHI´FLHQFLHV�
While the linear search algorithm is correct, it is
almost never the most efficient. The worst, or least
efficient, case would be when the desired element
is the last element in the list or not in the list at all
(both have the same efficiency). We would have
to look through every element in the list to find
the one we’re looking for. This would take n steps,
where n is the length of the list. The computational
complexity of linear search would be O(n). That
may seem pretty daunting, especially if we have a
list that has millions of elements. However, the best
case scenario is much better; if the desired element
is the first in the list, we would find it in one step.
Although linear search is not usually the most ef-
ficient, linear search can be useful in certain situa-
tions. Take for instance a list that you know nothing
about, like a stack of papers that are out of order.
It is just as efficient to search this stack linearly as
it would be to search for elements randomly. In
this case, we cannot search for elements in a more
efficient way since we don’t know anything about
the list. There is no information about the list’s orga-
nization for us to leverage. Now you can see why it
would seem rather convenient to sort a list before
searching it. Granted, sorting also takes up time and
space, but this additional step will save you some
time if you plan on searching a list multiple times or
if you have a very large list.

This is CS50.© 2018

([DPSOHV�RI�/LQHDU�6HDUFK

CS50

Recall the phone book example. While looking for Mike Smith, linear search meant going through each page
of the phone book one at a time. Even the algorithm where we flipped through two pages at a time can be
considered linear. In fact, any algorithm in which the there is a constant being multiplied by the total num-
ber of elements in the list to determine the search time, is considered linear. For example, if you are turning
three pages of the phone book at a time (remembering to make the correction if you overshoot), the search
time would be n/3. Since 1/3 is being multiplied to n, this algorithm would be considered linear. Linear search
should typically be avoided, as there is usually a better algorithm that can implemented to make the search
more efficient. Sorting a list first, is one such way to search more quickly. Once a list is sorted we are able to
leverage some of the concepts learned earlier to make a faster, efficient, and more elegant program.

Search for
the

50

1

33

17

50

12

29

3
Found 50!

Not 50step 1:

Not 50step 2:

Not 50step 3:

Not 50step 4:

Not 50step 5:

step 6:

Loops

Key Terms

• loops
• for loop
• while loop
• infinite loop
• do while loop

Overview
Loops are a way for a program to execute the same code multiple times. Instead of
copying and pasting the same lines back-to-back, loops allow for code to be repeat-
ed. The resulting code is better designed: if you need to change the code that gets
repeated, you only need to change it once. C has multiple different types of loops: all
of which can accomplish the same things, though some may be preferable to others
depending on the circumstances.

For Loops
The first type of loop in C is the for loop. Defining a for loop requires
three parts (included in parentheses after the word for, and separated
by semicolons), demonstrated at left (lines 1-4).

The first part is the initialization: we create a variable i initially set to 0.
This variable keeps track of which iteration the for loop is currently on.
Second is the condition: as long as the condition i < 10 is true, every-
thing within the curly braces will keep running. As soon as the condi-
tion is false, then the loop ends. The third part is the loop modification:

this code is executed at the end of every loop. In this case, we modify our loop by increasing the value of i by 1.

Thus, each time the loop finishes, i will increase in value by 1. As soon as i is no longer less than 10, the condi-
tion fails and the loop will end. The end result is that "hello\n" is displayed 10 times.

By taking advantage of loop modification, you can also get a loop to do something slightly different each time
the loop iterates. In the second for loop example (lines 5-8 above), j is initially 0, and so 0 is printed. Then j
increments to 1, and 1 is printed in the next loop iteration. This continues until j is no longer less than 10. The
result is that each number from 0 to 9 is printed on its own line.

This is CS50.© 2018

While Loops
C also includes a type of loop called a while loop. A while loop checks the
condition it is given: if it is true, it executes the code within the braces, and
then checks the condition again. This process repeats until the condition is
false. The example at right (lines 9-14) does exactly the same thing as our
second for loop (lines 5-8): printing out the numbers from 0 to 9.

If the while loop is given a condition that is always true (like the boolean
value true itself), then the loop will never stop running. The example at right
(lines 15-18) is an example of an infinite loop: since the condition will never
be false, the loop will continue running indefinitely. While loops are particular
useful when you don't know in advance how many times a loop should run.

Do-While Loops
The do-while loop is similar to a while loop in the sense that it
repeats a loop until a condition is false. However, a do-while loop,
unlike a while loop, will always execute at least once, regardless
of the condition. This is often valuable in cases where user input
is required: the program should definitely ask for input once, and
may or may not need to ask for input more times if the input is
invalid.

In the example at left, the user will be prompted to enter an inte-
ger, and will be re-prompted continuously until a positive one is
provided.

1 for (int i = 0; i < 10; i++)
2 {
3 printf("hello!\n");
4 }
5 for (int j = 0; j < 10; j++)
6 {
7 printf("%i\n", j);
8 }

 9 int k = 0;
10 while (k < 10)
11 {
12 printf("%i\n", k);
13 k++;
14 }
15 while (true)
16 {
17 printf("hello!\n");
18 }

19 int j;
20 do
21 {
22 j = get_int("Positive Number: ");
23 }
24 while (j <= 0);

CS50

Memory
Key Terms

• memory
• CPU
• HDD
• SSD
• RAM
• cache

Overview
In order for computers to be able to perform computations, they need to be able to
store information (as bits and bytes) into memory, which is just a way to keep data in
a place where it can be retrieved by the computer later. However, computers don’t just
have one type of memory: they have multiple different types of memory, which vary
in their speed, and the amount of information that they can store inside of them. Each
type of memory has its own advantages and disadvantages.

CPU, HDD, and RAM
A computer’s processor, or CPU, has some, but very limited mem-
ory of its own. 32-bit processors store just 32 bits in the CPU at
a time, while 64-bit processors can store 64 bits of data at any
given time. Although the CPU will often have to process files and
data that is much larger than 32 or 64 bits, it will only manipulate
and compute with 32 or 64 bit blocks at any given time, before
being fed the next block. The CPU is able to process these bits
extremely quickly.

On the other end of the spectrum is the hard disk drive (HDD),
which is able to store significantly more data than the CPU. Mod-
ern consumer hard drives can store gigabytes or even terabytes
worth of data. However, although HDDs can store significantly
greater amounts of data in memory, it takes much longer in order
to read and write data. There is also a newer kind memory that
does everything a HDD does called a SSD. Whereas HDDs rely on
a mechanical arm to read and write information, SSDs, or solid
state drives, do not have any moving parts, they are consequently
much faster.

Random access memory, or RAM, is much faster at reading and
writing data than the HDD and SSD, so it is used to store the
memory for applications that are currently running and files that
are currently open, so that they can be accessed more quickly.
However, computers generally have less RAM than they do hard
drive space.

This is CS50.© 2018

L1, L2, and L3 Cache
There are several smaller groups of memory that are faster at reading and writing information than RAM, but
have less memory space available as a result. This memory is known as the L1, L2, and L3 Cache. The L1 Cache is
the fastest (and the smallest) among the three, storing just a few kilobytes of data that can be very quickly given
to the CPU for processing. The L2 cache is slightly larger, but also slightly slower than the L1 cache. The L3 cache
is the largest of the three (often storing a few megabytes in memory), but also the slowest of the three. However,
even the L3 cache is faster than RAM.

CPU

L1 Cache

L2 Cache

L3 Cache

RAM

HDD/SSD

G
re

a
te

r
M

e
m

o
ry

 S
p

e
e
d

G
re

a
te

r S
to

ra
g

e
 S

p
a
c
e

Tradeoffs
In general, the tradeoff for memory is one of space versus speed. The types of memory that are faster also tend
to have less available. Faster memory also tends to be more expensive per unit of storage space. For instance,
the price of RAM per gigabyte is greater than the price of a hard drive per gigabyte.

RAM is used by the operating system in order to run applications concurrently. If too much RAM is being used,
some modern operating systems will employ “virtual memory,” whereby they transfer some information from
RAM to the hard drive temporarily, and retrieve it when it’s needed by the user.

CS50

This is CS50.© 2018

Merge SortCS50
Key Terms

• merge sort
• array
• recursive
• pseudocode

Overview
Sorting algorithms like selection sort, insertion sort, and bubble sort all suffer from the
same general limitations and thus have the same worst-case runtime of O(n2). Merge
sort, on the other hand, is fundamentally different, leveraging recursion to “pass the
buck” of sorting, accomplishing a drastically superior runtime: O(n log n)!

Implementation
Merge sort works by breaking an array into sub arrays and merg-
ing the subarrays back in a recursive way. To understand how this
works, let’s take a look at the following pseudocode:

merge sort:
 if number of elements < 2
 return
 else
 sort the right half
 sort the left half
 merge sorted halves

Using the lines above and the array on the left (containing these
numbers: 5 1 6 2 4 3), we are going to sort the left and right halves
of the elements and merge them together. Note that when run-
ning merge sort, we only need enough space to store two copies
of the array, despite the fact that the diagram on the left appears
to require more space. At this point, we have no way of sorting
the right or left halves, so we are going to recursively call the
merge sort function. Similarly, we are going to continue to do
this until we are left with all arrays of size 1. We’ll need to handle
running into an odd number of elements in a consistent way. Here,
we implemented our program such that the left side of the split
will have one more element than the right if the array has an odd
number of elements.

After the elements are broken down into arrays of size 1, we are
able to merge the sorted halves, since any array of size 1 is con-
sidered sorted. When we merge the two halves, we are removing
the smallest numbers from the subarrays and appending them to

the merged array, repeating until all elements of both subarrays are used up. (Note: The smallest elements will
always be at the beginning of the subarrays, so we only need to check the first elements in the respective sub-
arrays.) Since 6 was a single element array in the previous iteration, it does not need to be merged. We continue
to do this until all the right and left halves are sorted from the previous iteration. Upon the next iteration, when
we merge the arrays back into arrays of size 3, we need only look at the 0th index of each subarray to find the
smallest element of the newly-merged array. In this case, this would be 1 and 6 for the left half and 2 and 3 for
the right. Since 1 and 2 are the lowest numbers of their respective sides, they go into the 0th indices of the new-
ly-merged array. And we’ll continue to merge arrays in this way until the array is fully sorted.

Sorted Arrays
Like selection sort, merge sort has the same runtime in the best and worst case scenarios. Consider running
merge sort on an already sorted array: since our program would have no way of knowing that it had already
been sorted, it would have carry out the entire process the same way that it would with an unsorted array.

465 3

45

Step-by-step process for
merge sort

5 1 6 2 4 3

2 4 35 1 6

5 1 2 46 3

5 1 6 2 4 3

1 6 2 3

21

1 2 3 4 5 6

0 21

21021

543

0

0 1 0 0 01

Models and Simulations

Key Terms

• model
• simulation

Overview
Computers are powerful because they can make complex calculations very quickly.
One of the ways we can take advantage of this power is by creating models and simu-
lations to represent complex objects and/or events. By creating virtual representations
of things we are curious about, we can increase safety, save money and time, stretch
our imaginations, and ultimately learn more about the world around us.

This is CS50.© 2018

CS50

Applications and Limitations
Because models and simulations essentially create virtual copies of our world, they are used in nearly every field
today. Models and simulations allow people to engage in test runs without going through the real thing, provid-
ing low-risk training for less time and money. For example, simulations are used by the military to train soldiers
for dangerous situations and by medical schools to train doctors for various medical procedures. Simulations can
also be used in therapy for those with mental health issues. Beyond training, models and simulations can be used
to learn more about a system or phenomena. Meteorologists use simulations to predict upcoming weather, econ-
omists use models to analyze markets and make predictions, and ecologists use models to better understand
living systems. Even things like traffic can be modeled using simulations, helping us develop better solutions to
practical problems. Models and simulations can be as large or small scale as we want. We can use simulations
to analyze anything from molecular interactions to the Big Bang; the scale and detail of a model is a part of its
design. Outside of research and analysis, models and simulations can be used for entertainment. Models and
simulations are used in movies and video games to create computer-generated imagery (CGI), enabling us to
construct realistic yet fantastical worlds and beautiful animation.

However, models and simulations are not the perfect solution to everything. While they clearly have many po-
tential benefits, it is important to remember that models and simulations are abstractions of reality and may not
be entirely accurate. Models must be calibrated, verified, and validated before they can be considered accurate,
and even then, there is potential for error. In addition, there are significant costs for models and simulations. They
require a significant investment to create, and depending on the complexity of the model or simulation, they
may require a lot of computational power, therefore costing a lot of money. Nevertheless, computer models and
simulations have been an invaluable tool in nearly all disciplines. As computers continue to become more power-
ful, models and simulations will too.

Building Models and Simulations
A model is a static representation of an object or a system. On a computer, mod-
els are often made up of algorithms, equations, and/or visual reconstructions. A
simulation is a dynamic representation of a model, or the running of a model.
Simulations allow us to change variables of a model and observe the effects of
those variable changes. Where models seek to replicate features of an object or a
system, simulations seek to replicate behaviors.

Models and simulations are implemented on a computer by creating a set of pa-
rameters that define the represented system. For example, to create a simulation
of a bouncing ball, you would program the mass of the ball, the force of gravity,
the springiness of the ball, and the type of collision, all as mathematical equations.
The computer would then be able to mimic the way a ball bounces in reality, pro-
viding an isolated and controlled reality for scientists to play with. However, more
often than not, models and simulations don’t attempt to represent all factors of
a system. Instead, they focus on the relevant ones. Relevant factors can include

factors of interest for a particular research project, or factors that have the most significant effects on a system.
Models and simulations are often designed to be simplified versions of a real object or phenomena, making them
easier for us to analyze and understand. Ultimately, because we input parameters of models and simulations, we
have full control of what we’d like to get out of them.

MVC

Key Terms

• MVC
• model
• view
• controller
• encapsulation

Overview
With anything you build, whether it’s a house or a computer, there’s an underlying
structure that keeps the project organized. For a house, that structure may be a floor
plan, designating the organization of a kitchen and a few bedrooms. Web applications
are no different. One popular structure for web applications is called MVC, or model
view controller. We use this model, or architectural pattern, to organize our code into
parts that all have their own functions.

MVC
MVC is an architectural pattern that splits a web application into 3 logical components: model, view, and con-
troller. The model stores and manages the application’s data; this could consist of a database or some other file
containing data. The view concerns the user-facing presentation of the application; it is application’s output. The
view might include files written in HTML, CSS, and Javascript. The controller is the logic that connects the mod-
el and the view. It is in charge of moving information between the user and the model as well as processing the
given information. The controller might consist of programs written in Python and/or SQL.

For example, imagine an application that takes in a location and outputs nearby restaurants. The view would
have an interface prompting the user to input a location. The location would then be passed to the control-
ler and the controller would use the location to select the desired information from the model. In this case,
the model could be a database containing a list of restaurants and their addresses. The controller would be in
charge performing the necessary calculations to tell the model which restaurants it wants. Once the controller
has retrieved a list of nearby restaurants from the model, the controller can send that information to the view to
present to the user.

This is CS50.© 2018

CS50

Why MVC?
MVC is popularly used in industry because of its encapsulation of different parts of a web application. Although
the model, view, and controller work together, their functions are independent of each other. Therefore, the
model, view, and controller can be developed separately and simultaneously, making the MVC scalable and ex-
tensible. It also allows for the delegation of tasks among a large team of people, leading to a faster development
process. Within these teams, the model, view, and controller can be independently tested. After a web applica-
tion is built, MVC allows updates to be made without needing to update all parts of the application; any one part
can be changed without changing the other, as long as the interactions between them remain the same. This
compartmentalization also enables code reuse between different web applications.

view model

user

controllerinput input
processed

input

processed
output

processed
output

output

web application

The view is respon-
sible for enabling
communication be-
tween the user and
the application. May
include HTML, CSS,
and Javascript files.

The controller is the mastermind; it
takes input from the view, process-
es it, uses it to send requests to the
model, takes output from the model,
processes it, and then passes it back
it the view. May include programs
written in Python and/or SQL.

The model stores
data. It responds to
requests from the
controller to return
particular data or
update itself. May
include a database.

Key Terms

• ncurses
• text-based user

interface
• API
• header file

Overview
ncurses is a C library for writing text-based user interfaces that runs portably across
various terminals and terminal emulators. ncurses conceives of the terminal screen as a
grid of (y, x) character positions, where y counts rows down from the top of the screen
and x counts rightwards. It provides an application programing interface (API), which is
a series of functions for manipulating the terminal screen. Hundreds of terminal-based
applications use ncurses.

Using ncurses
To use functions from any library in C, we need to #include the header file at the top of our source code file.
In this case, we’ll use #include <ncurses.h>. When compiling our code, we’ll also have to link the library (with
-lncurses when working with ncurses, typcially in a file called a Makefile, which tells make what to do) so that the
resulting object code knows how to execute the functions.

This is CS50.© 2018

Some Common ncurses Functions
initscr() takes no arguments, but, as a side effect, initializes all the appropriate data structures and flushes the
screen.
endwin() is the antidote to initscr, this time quitting `ncurses` and returning the terminal window to its state
preceeding the program.
getch() takes no input, but returns a character typed in at runtime by the user.
move() moves the cursor to a (y, x) position on the screen.
addch() adds a character at the cursor's location.
mvaddch() takes a (y, x) position and a character, combining the above two functions into one.
mvaddstr() takes a (y, x) position and a string, writing the start of the string at that position and going right-
wards.

CS50

An example
In the code below, we first initialize ncurses with initscr(). Then we use raw() to prevent the terminal from buff-
ering the characters that a user may type. That way, the progam can detect as soon as a user types even a single
character.

1 // initialize ncurses
2 initscr();
3 raw();
4
5 for (int i = 0; i < 10; i++)
6 {
7 move(i, i + 2);
8 addch('*');
9 mvaddstr(i, i + 11, "/////");
10 mvaddch(i, i + 24, '*');
11 }
12 // quit on any input
13 getch();
14
15 // close ncurses
16 endwin();
17 return 0;

 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *

The for loop takes care of
each line in the diagonal,
one by one. Notice how
we can use move and ad-
dch equivalently to mvad-
dch. For entire strings, the
mvaddstr function can be
used.

Notice how we place the
characters or strings at
(y, x) indices, where y
counts rows down and x
counts rightward.

This different coordinate
system makes more sense
for programs that read
left to right, top to bot-
tom.

$ make diagonal
$./diagonal

ncurses

Operators

Key Terms
• operator
• arithmetic
 operators
• assignment
 operators

Overview
You're probably familiar with operators from math: the + symbol means addition, the
- symbol means subtraction, etc. C also has operators, which you can use to modify
or combine values. In addition to having operators that perform basic mathematical
operations like addition, subtraction, multiplication, and division, C also has operators
that perform other functions: like finding the remainder when dividing, or updating the
value of a variable.

Arithmetic Operators
C's arithmetic operators perform mathematical functions on num-
bers. The + operator adds two numbers, the - operator subtracts
one number from another, the * operator multiplies two num-
bers, and the / symbol divides one number by another. See lines 1
through 4 of the code to the left to see how such operators work.

When working with ints and dividing, it's especially important to
be aware that an int cannot store non-integer values. For instance,
in line 5, we try to store the value of 10 / 3. C sees a division of two
integers, and tries to make the result an integer as well. But since
the "real" value of 10 / 3 isn't a whole number, everything after the
decimal gets cut off (or "truncated") and e is set to just 3. In order
to save the value with the decimal included, we would need to use
floating-point numbers, like »������ʰ�ɨɥŜɥ�ŵ�ɪŜɥ.

C has another operator, %, which is called the modulus operator. The
modulus operator gives us the remainder when the number on the
left of the operator is divided by the number on the right. Line 6
demonstrates the modulus operator: the remainder when dividing
13 by 3 is 1, so the value of f is set to 1.

This is CS50.© 2018

Assignment Operators
C also provides assignment operators, which provide a variety of ways
to update the value of a variable. The standard assignment operator (ʰ)
is demonstrated on line 7: it sets the value of e to be equal to whatever's
on the right side of the equals sign: in this case, the current value of f
added to 1.

The variable you're assigning can also be on the right of the equals sign
itself. On line 8, the value of e is set to the existing value of e plus one.
While ��ʰ���ʫ�ɨ might not make logical sense in algebra, it's valid in C.
Updating the value of a variable based on its existing value is so com-
mon that C has special syntax for it: the operators ʫʰ, Şʰ, Ƌʰ, and ŵʰ will
set a variable to its existing value plus, minus, multiplied by, or divided
by some other number.

C also includes special syntax for increasing the value of a variable by
one or decreasing the value of a variable by one, by writing the name of
the variable followed by ++ or --. So a statement like e++ on line 11 takes
the value of e and increases it by 1.

ɨ��������ʰ�ɩ�ʫ�ɯŚ
�

10

ɩ��������ʰ�ɨɥ�Ş�ɪŚ
�

7

ɪ��������ʰ�ɫ�Ƌ�ɮŚ
c

ɩɯ

ɫ��������ʰ�ɨɥ�ŵ�ɩŚ
�

5

ɬ��������ʰ�ɨɥ�ŵ�ɪŚ
e

3

ɮ����ʰ���ʫ�ɨŚ
e

ɩ

ɯ����ʰ���ʫ�ɨŚ
e

3

ɰ����ʫʰ�ɨŚ
e

ɫ

ɨɥ����Ƌʰ�ɮŚ
e

ɩɯ

ɨɨ���ʫʫŚ
e

ɩɰ

ɭ��������ʰ�ɨɪ�ʩ�ɪŚ
f

1

CS50

Python

Key Terms

• Python
• high-level
• low-level
• list
• tuple
• dict
• dynamically
 typed

Overview
There are many programming languages used in the world of computer science. Many
of these languages can accomplish equivalent tasks, but programmers choose a lan-
guage depending on the project they’re working on. Think of different programming
languages as different kinds of shoes. Shoes all share core functionality: protecting
your feet from the ground. But while athletic shoes are great for running, they are
much worse in the cold than a pair of warm boots. Similarly, while programming lan-
guages all share the same basic functionality, each emphasizes particular features that
are optimal for specific uses.

Python
Python is a high-level programming language developed to be easy to learn, easy to read, and broadly appli-
cable. By abstracting away low-level technical details like memory management, Python reads more similarly
to a natural language than a low-level language like C. Python is also different from C in that it is interpreted
at run time rather than compiled to machine code beforehand. This allows us to run a single command (for ex-
ample, python hello.py) to run a program. Because of its convenience, Python is widely used and compatible
with other technologies such as databases, graphical user interfaces (GUIs), and web programming.

This is CS50.© 2018

CS50

Built-in data types
list - an ordered and changeable collection of items (can be updat-
ed and length can be changed)
 >>> mylist = [“foo”, “bar”] create a new list
 >>> mylist.append(“baz”) append “baz” to mylist
 >>> mylist show mylist
 [“foo”, “bar”, “baz”] value of mylist

tuple - an ordered and unchangeable collection of items
 >>> mytuple = (“foo”, “bar”, “baz”) create a new tuple
 >>> mytuple[0] show the value at the 0 index of mytuple
 “foo” the value at the 0 index of mytuple

dict (dictionary) - an unordered, changeable list of key value pairs
in which the key is the index to access a value
 >>> fruitcolor = {“apple”: 3, “lime”: 10} create a new dict
 >>> fruitcolor[“apple”] show the value of “apple”
 “red” value of “apple”

Things to Remember
• Tabs and new lines are used to denote the end of commands and
functions, no semicolons here!
• Python uses colons similar to the way we use open curly braces
({) in C, but these should be on the same line as the code, not a
line all by themselves.
• Python is a dynamically typed language, meaning it infers data
types at the time of assignment. + acts as both arithmetic addition
and string concatenation depending on the variable types.
• Python comes with more functions out of the box than C. Ad-
ditionally, there are lots of libraries that exist for Python so it is
typically a good idea to check if functions exist in Python’s many
libraries before you implement them yourself.

Syntax

 from cs50 import get_string

 def main():
 print(“hello, world”)

 if __name__ == “__main__”:
 main()

 while True:
 print(“hello, world”)

 for i in range(50):
 print(“hello, world”)

 if x < y:
 print(“x is less than y”)
 elif x > y:
 print(“x is greater than y”)
 else:
 print(“x is equal to y”)

 import sys

 for s in sys.argv:
 print(s)

Python for Web Programming

Key Terms

• server-side
scripting

• Flask
• web framework
• micro framework
• Jinja

Overview
In addition to using Python for writing local programs and algorithms, Python is of-
ten used for web programming. In web programming, Python is used for server-side
scripting. In other words, it’s used on the back end of a web application to implement
web servers. While Python is one of many languages used for back end web program-
ming, its readability, simplicity, and convenience all contribute to its popularity. In par-
ticular, Python has a built in HTTP server library called http.server that includes func-
tions for listening, managing, and responding to HTTP requests. Because Python has a
history of being used for web programming, many external web programming tools are
built using and compatible with Python, such as Django and Flask. Python also offers
easy integration with other tools and programming languages.

Flask
Flask is a micro web framework written in Python that provides programmers with tools to easily and quickly
implement web applications. A web framework is software that provides tools, libraries, and extra technologies
to build web applications, and a micro framework is a framework that is not highly dependent upon external
resources. Because of tools like Flask, it is unnecessary for web programmers today to build web servers from
scratch. Instead, by abstracting away lower level details, web programmers can focus on the logic of their specif-
ic web applications.

The code on the right shows the Python file of a simple web
application. In the first line, we import some functionality from
the Flask package. Then, we use Flask syntax create a new web
application, allowing Flask to set up some low level details.
Below that, we tell our applciation to go to the function index
when the “/” route is requested. Within index, we’ve called the
Flask function render_template to send the file index.html to
our user’s browser.

As you can see, building a web application with Flask is incredibly simple. In addition to this basic functional-
ity, Flask offers many other features that are useful for building web applications. To use these features, simply
check out Flask’s documentation.

This is CS50.© 2018

Jinja

CS50

Jinja is a template engine built into Flask. One of
its features is a templating language that allows
you to use dynamic elements (variables, loops,
conditions) in static HTML/CSS files. Jinja expres-
sions are very similar to Python expressions, mak-
ing Jinja even more convenient to use. Jinja also
enables inheritance of HTML/CSS files, minimizing
rewritten code.

In the code on the left, the file message.html is
using Jinja to inherit code from layout.html. Inheri-
tance of templates demonstrates better program-
ming design because it reduces repeated code,
maintains consistency, and makes templates more
convenient to update.

Like Flask, you can learn more about features of
Jinja by looking at the Jinja documentation.

�����»�����������	����ř�������ɏ��������

����ʰ�	����ſɏɏ����ɏɏƀ

ɒ���Ŝ�����ſũŵŪƀ
���������ſƀś
�����������������ɏ��������ſũ�����Ŝ����Ūƀ

� ʳŠ������������ʴ

� ʳ����ʴ
����� � ʳ����ʴ
��������� � ʳ�����ʴ�����ʳŵ�����ʴ
����� � ʳŵ����ʴ
����� � ʳ����ʴ
��������� � Ƈʩ������������ʩƈƇʩ����������ʩƈ
����� � ʳŵ����ʴ
� ʳŵ����ʴ

� Ƈʩ���������ũ������Ŝ����Ū�ʩƈ

� Ƈʩ������������ʩƈ
� � �����ř������Š
� Ƈʩ����������ʩƈ

layout.html

message.html

Pseudocode

Key Terms

• programming
language

• pseudocode
• assignment
• indent

Overview
Computer programs are generally written in a programming language, which is a for-
mal computer language used to provide instructions for a machine. Programming lan-
guages require that code be written in a very particular syntax. To express algorithms
without using a programming language, many computer scientists will instead choose
to use pseudocode, which is a programming tool that lets us present algorithms in a
natural language.

An Example of Pseudocode
Consider how we might write an algorithm to count the
number of people in a room. We might start by thinking of
the number 0, and then for each person in the room, think
of the number one greater than the one we’re currently
thinking of.

The first block of pseudocode to the left expresses this
idea. It’s not written in a programming language, but it’s
described formally so that the steps are very precise and
clear. We start by giving a name, like n, a value: 0. This
process is called assignment, and we use it so that we can
refer to our value by name later in our code. Now, for each
person in the room, we can re-assign n to be n + 1, so that
the value increases by one for each person. Now, at the end
of the algorithm, n is the number of people in the room.

This is CS50.© 2018

Elements of Pseudocode
There’s no one correct way to write pseudocode. Sometimes your pseudocode will be more or less detailed,
depending on what your purpose is. Unlike a programming language, there’s also no defined syntax for how
pseudocode needs to be written.

There are, however, some elements that are likely to reoccur in pseudocode. Pseudocode will often involve con-
cepts like assigning values—such as in the above examples. Pseudocode may also contain conditions (where
certain code blocks will only be executed under certain conditions) as well as loops (where certain code blocks
will be repeated a number of times). These concepts, which can be represented in pseudocode, are also import-
ant concepts for programming in a programming language. Even after you’ve learned a programming language,
pseudocode can still be helpful for expressing the steps of an algorithm without having to worry about syntax, so
that you can better understand your program’s logic.

 1 let n = 0
 2 for each person in room
 3 set n = n + 1

 1 stand up
 2 assign yourself the number 1
 3 until only one person remains standing
 4 pair off with someone else standing
 5 add your numbers together
 6 assign yourself the new number
 7 choose one member of the pair to sit
 8 if you are chosen
 9 sit down and do nothing else

We can try another method of counting the number of people in the room, to demonstrate some more compli-
cated (but more efficient) pseudocode. Start by having everyone stand up, and assign themselves the number
1. Now, everyone pairs off with someone else standing, adds their numbers together, and then one person sits
down. If this process repeats until there’s only one person left standing in the room, then the number that they
have been assigned should be the total number of people in the room.

This algorithm is expressed by the second block of pseudocode above. Notice how, while not expressed in a
programming language, the algorithm is still precise. The code also indents some of the lines (shifts them to the
right by a certain amount of space) to show what blocks of code go with which statements. For instance, since
lines 4-9 are all indented, it’s a sign that all of those lines should repeat ‘until only one person remains standing,’
per the instructions on line 3. Likewise, since ‘sit down and do nothing else’ on line 9 is indented, it’s a sign that it
should happen ‘if you are chosen’ per the instructions on line 8.

CS50

Principles of Good Design

Key Terms

• efficiency
• magic numbers
• tradeoffs

Overview
Design is a very important aspect of programming and product development. Good
design differentiates programs that work from programs that work well. Programs
with robust, consistent, and nonrepetitive code are generally considered to be well-de-
signed. Other measures of design are program efficiency and modularization. In order
produce portable, scalable, and reusable code, we must keep design in mind while
programming.

This is CS50.© 2018

Loops and Conditionals
Loops are very powerful and often used in programming. However, as they are somewhat costly, we should make
sure we use them efficiently. We can check that we are doing so by asking ourselves the following questions: Are
each of my loops essential? Can I combine any loops? And am I taking advantage of every iteration of my loops?

Along similar lines, it’s important to use conditionals (if, else if, and else) efficiently. Consider a program that
takes in a birth month and outputs a corresponding birthstone. We could implement it by checking if the user
inputted "january", then checking if the user inputted "february", and so on until we reach "december". But, if
we already know that a user inputted "january", why bother checking any of the other months? In this case, we
could improve our program’s design by using else if statements or switch statements instead of all if statements.

CS50

Constants
Magic numbers are hard-coded constants in code. We consider using them to be bad design since they reduce
the scalability and readability of code. Furthermore, making changes to hard-coded values must be done manu-
ally. Using variables instead can facilitate making such changes. Additionally, we can use ɤ��º�� to define con-
stants that will not change, like the number of letters in the alphabet (26) or the value of a nickel in cents (5). We
do this at the beginning of our code with ɤ��º�� after our header files and outside of our main function.

Functions
It’s typically good design to break code out into functions when needed. For instance, if we were performing the
same set of mathematical operations to multiple different values, it might make sense to write the set of opera-
tions as a function and simply call that function multiple times. Similarly, it’s also a good idea to break really long
code into different files, linking between them so they can all work together smoothly. In these ways, we can
make code that could otherwise be very tedious and complicated to get through be easier to make sense of.

Tradeoffs
Design is subjective and debatable. What one program-
mer may think is better design, another might fundamen-
tally disagree with. For instance, someone could write
code using an uncommon function that makes the pro-
gram shorter and more concise. However, a person that
had never seen the function before and had to look up its
documentation could very well argue that the program
was not written clearly.

At right are two different implementations for an algo-
rithm that takes in a number of t-shirts and tells us how
many boxes we need to store them, if our options are
boxes that fit 12 shirts, 10 shirts, 3 shirts, or 1 shirt. Which
is best designed? Well, different programmers could ar-
gue in favor of either one, since each come with their own
set of tradeoffs. What do you think?

num_boxes += (shirts_left / 12);
shirts_left %= 12;
num_boxes += (shirts_left / 10);
shirts_left %= 10;
num_boxes += (shirts_left / 3);
shirts_left %= 3;
num_boxes += shirts_left;

int boxes[] = {12, 10, 3, 1};
for (int i = 0; i < 3; i++)
{
 num_boxes += (shirts_left / boxes[i]);
 shirts_left %= boxes[i];
}

This is CS50.© 2018

Key Terms

• router
• routing table

Overview
The Internet allows information to be sent from one device to another. To facilitate this
process of passing data between computers, the Internet makes use of routers, which
direct packages of data across various networks. Routers follow a very specific set of
instructions in order to ensure that the data they are routing across the Internet ends
up at the correct location.

The Routing Model
Devices on the Internet need to be able to communicate with
other Internet-connected devices. One way to organize such a
network is as per the diagram on the left, where every comput-
er on the network is physically connected to every other com-
puter on the Internet.

Such a model would certainly be fast, since to get information
from one computer to another, it could be sent directly to its
destination. However, such a model would require an infeasible
number of physical connections. Note how complicated this
connection web is, even with just six computers connected to
the Internet. Imagine what it would look like with millions, or
even billions, of Internet-connected devices! Clearly, having
every computer physically connected to every other computer
is not at all reasonable.

Instead, the Internet makes use of routers. Routers act as inter-
mediaries between devices on the Internet. Every computer is
connected to a router, and each router is connected to other
routers. You can think of router as a post office. A package gets
sent from post office to post office until it reaches the post of-
fice closest to its destination. Just as anyone can send anyone
else a package, every computer on the Internet can communi-
cate with every other computer through these routers – just not
directly.

Computers can send information to one other on the Internet
by passing data through one or more routers. This data is sent
in packets, which travel through the Internet via routers, get-
ting passed along from router to router until reaching their final
destination: the router which is connected to the destination
computer.

Routing Tables
Routers are programmed with instructions on how to figure out where to send each packet of data based on
the destination's IP address. These instructions are often stored in what’s known as a routing table. Routers can
discern, based on the initial digits of an IP address, the direction in which packets need to be sent.

But routers don't need to have information about the exact overall path the data packet needs to take in order
to get to its destination: the router just sends the packet one step closer to the destination and then lets the
next router take care of the rest. Furthermore, there often won't be just one route that data must take in order to
get from one location on the Internet to another. Routers will frequently move different packets of data across
different routes, even if they are intended for the same location.

Network Without Routers

Network With Routers

R

R

R

CS50 Routers

CS50

This is CS50.© 2018

Recursion

main()

recurse(3)

recurse(2)3
*

recurse(1) = 1*2

Key Terms
• recursive solution
• iterative solution
• base case
• recursive case
• call stack
• active frame

Overview
Recursive solutions to problems are typically contrasted with iterative ones. In a
recursive solution, a function (or a set of functions) repeatedly invokes slightly
modified instances of itself, with each subsequent instance tending closer and
closer to a base case. In the meantime, the intermediate calls are all left waiting,
having “passed the buck” to a downstream call to give it the answer it needs.
Recursive procedures, when contrasted with iterative ones, can sometimes lead to
incredibly efficient, elegant, and, some might even say, beautiful solutions.

Recursion versus Iteration

Call Stack Representation
When a recursive function (or any function for this matter) is called, it creates a new frame on the stack. Ev-
ery subsequent function called within main() is created on top of the previous frame. This stack, where all of
our function calls exist, is called the call stack. This means that the function at the top of the stack is the most
recently called function. We call this the active frame. Say we pass in 3 as the input for recurse(), then main()
will call recurse(3), which will call recurse(2), and so on. This process will continue to occur until the base case
is met. Once this happens, that return value trickles down and is plugged back into the function calls left open

in the call stack. In our example, 1 would be plugged into recurse(1), destroy-
ing this frame in the call stack and leaving recurse(2) as the active frame. The
number 2 would be passed into recurse(2) in the same way and so on until re-
curse(3) returned 6 and passed that back to main(). At this point, main() would
be the only function left in the call stack, since all the other calls to recurse()
would have been destroyed after returning a value.

Note that in our sample iterative solution above, there would only be one func-
tion called, iterate(). So in some ways iterative solutions are simpler than
recursive ones. And since iterative solutions can usually solve the same types of
problems as recursive ones, there will almost never be a real world problem that
requires us to use recursion as a means to solve it. Rather, recursion can be used
to make our code more elegant and efficient.

int iterate(input)
{
 int product = 1;
 for(int i = input; i > 0; i--)
 {
 product *= i;
 }
 return product;
}

int recurse(input)
{
 if(input == 1)
 {
 return 1;
 }
 return input * recurse(input - 1);
}

Recursive solutions can often replace clunkier iterative ones.
One great example of this is with programs that calculate
the factorial of a number. Remember that “n factorial,” or n!,
simply represents the product of all integers less than and
including n. So 3! would be six (3 * 2 * 1). Consider the
two approaches on the right for implementing a function to
find the factorial of an integer. The first implementation looks
familiar. This is known as an iterative solution as we are iter-
ating through a loop, substituting in different values for i. In
this solution, we have declared two variables (product and i),
while in the recursive solution, we have not declared any. Also,
note that recurse() is fewer lines shorter than iterate().

Implementation
Recursive solutions to problems are made up of two parts:
the base case and the recursive case. The base case is what
allows us to break out of an infinite loop. Without a base case
our program would continue to run until it no longer had the
space to do so and resulted in a segmentation fault. In our example, the base case is when input == 1. The recur-
sive case is where the function invokes itself. This appears in the last line of recurse(), where recurse is called
again. In this way, recurse repeatedly calls itself until 1 is the value being passed into the function.

Syntax

Key Terms

• C
• syntax
• function
• string
• compile

Overview
C is a programming language with which you can write programs. Programming
languages like C require you to write using a very specific syntax: a set of rules that
describe how to arrange words and symbols (like brackets and parentheses) in order
to write working statements that together can form a complete program. C's syntax
might seem complicated at first, but with practice, the syntax of the language will start
to become second nature to you.

Your First C Program
The code to the left is an example of a simple program in C which dis-
plays "hello, world" in the terminal window when it runs. Line numbers
have been added to the left side of each line for reference, but they
shouldn't be included in the code itself.

On line 1, #include <stdio.h>, tells your program to access a set of
pre-written functions stored in a file called stdio.h, where a function is
a collection of programming statements that performs a particular task.

This is CS50.© 2018

Compile and Run Your Program

Now that you've written your program, it should be saved in a file (typically ending with .c). In this case, we
might call our file hello.c. This is your source code file. However, computers can't understand C code directly:
remember that computers can only understand sequences of 0s and 1s. First, we need to compile our program:
converting it from source code to object code, which is just sequences of 0s and 1s. Once the source code is
compiled into object code, it can be executed. Any lines of code that begin with // or are enclosed with /* and
*/ will be ignored by the compiler: these lines are called comments, and will frequently be used by programmers
to document their code so that people reading the code later (including themselves) can understand what's
happening in the code.

Several compilers exist, including clang and gcc. We can also compile our program by typing the command make
hello at the command line, which uses the clang compiler. If the program compiles successfully (without errors),
then we can run the program by typing ./hello at the command line. If all goes well, hello, world should be
printed to the screen.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("hello, world\n");
6 }

By including stdio.h, your program can now take advantage of code that people have already written in the
past: in particular, a function called printf, which displays text on your screen.

On line 3, int main(void) defines a function which acts as the beginning of your program, serving the equiv-
alent of the "When Green Flag Clicked" button in Scratch. When your C program runs, it will look for the main
function to know where to start. The curly braces on lines 4 and 6 hold the code of the main function together.
Anything inside of the curly braces is therefore a part of the main function.

In this program, the main function has just one programming statement: printf("hello, world\n"). printf is a
function (that was written in stdio.h) which displays a string (which is just a fancy way of saying "text") on the
screen. In C, strings are always surrounded by double quotation marks.

Within the parentheses for printf, we've provided printf with a string as input, so that printf knows what
string to display on the screen. In this case, our string is "hello, world\n". The \n character tells printf to dis-
play a new line. The result of displaying "hello, world\n", then, is to print out the words hello, world on the
screen, followed by a new line. Finally, at the end of line 5 is a semicolon (;), which is C's way of defining the end
of a programming instruction.

CS50

CS50Structures and Encapsulation

Key Terms

• data structure
• struct
• member

Overview
At a certain point, the usual suspect data types no longer suffice for the kind of work
we need to do. Rather, we need to be able to encapsulate data more broadly, allowing
us to group related information together. For example, students have names (proba-
bly represented by strings), ages (probably represented by integers), and grade-point
averages (probably represented by floating-point numbers)--but none of those things
matter independently. Instead, all of these things come together and are part of some
larger overall entity: the student. Wouldn’t it be nice to be able to “bundle” these things
together, perhaps allowing us to abstract away some of the underlying specifics? In
more modern programming languages, we might do this with a so-called object, but in
C, we have a more basic mechanism for this: the data structure.

Arrays versus Structs

This is CS50.© 2018

Implementing Structs
In the lines of code above, we defined a new type called ‘student’. Similar to how int is a type, so too is student
a type – once we define it. We can now pass variables of type ‘student’ into functions or into other structs. To
create a new a new variable of type ‘student’, we need to write a line similar to what we would write if we need-
ed to declare a variable of type int: student s1 = {‘Zamyla’, 2014, 4.0}. Now, to access s1’s gpa, we can type
s1.gpa. To pass s1 to a function, let’s again look back at how we would do so with ints. For example, int foo(-
student x), is valid. Similarly, to pass in Zamyla’s student information, we can write foo(s1). And if the function
takes an argument of type int, we could simply pass in just the year member of s1 by using the line function(s1.
year).

�ɨ�ɤ��º������������ɪ
�ɩ�������������ƃ��������ƄŚ
�ɪ���������������ƃ��������ƄŚ
�ɫ�»��������ƃ��������ƄŚ

 1 typedef struct
 2 {
�ɪ� �����������Ś
�ɫ� ��������Ś
�ɬ� »�������Ś
 6 }
�ɮ��������Ś

Up until now, if we wanted to group data together, we were
limited to an array, each element in which needed to be of
the same type. Furthermore, we had to declare the size of
the array beforehand. To create a group of variables related
to students using arrays, each variable needs to be its own
array. And to increase or decrease the amount of students,
we need to change the ɤ��º����������� line accordingly.
One advantage of this setup is that, so long as we know the
index associated with them, we can directly access every
student.

Another way to group data together is with a struct. Structs
allow us to make new data types out of existing ones. Here
we created a type student that has a string, an int, and a
float associated with it. We will refer to these as members.
In this way, we can refer to a specific member of the student
type via the line student.member, where “member” is the
name of whichever member we want to access. A tradeoff
of using structs is that we cannot iterate through each field
like we can in arrays. In C, arrays are static; so too are the

fields in structs. These attributes, such as a name or a year, must be defined. One of the main advantages of
storing data in a struct is that we can group data of different types together. Another benefit is that we don’t
have to declare how many ‘students’ there will be. Remember that in our earlier implementation of an array, we
had to include a ɤ��º�� line, but in structs, we can have as many students as we like without having to define
that number somewhere in our code.

SQL

Key Terms

• database
• field
• record
• primary key
• persistent
• SQL

Overview
Imagine that you have a sheet of paper with someone’s username on it and a separate
sheet of paper with the matching password. It wouldn’t be very difficult to keep them
together. But now imagine that you have thousands of these papers, all with corre-
sponding pieces of information. How would you keep them organized? That’s where
databases come in. A database is a program that stores data in an easily accessible,
manageable, and updatable form. By organizing data in a database, programs can ef-
fectively and efficiently keep track of enormous amounts of information.

This is CS50.© 2018

CS50

Databases
Databases look very similar to spreadsheets, like those
found in Excel or Google Sheets. The data is organized
in a table in fields (columns) and records (rows). Fields
describe the data in a column and records link related
pieces of information. In the example on the right we’ve
stored the names, ages, and favorite foods of a few
dogs. The field names of this table are id, name, age,
and favorite food. Each row ties pieces of information
together; we know that Elphie is age 2, and loves vanilla
ice cream. In this table, the id is set to be the primary
key, or a unique identifier for each record. Each table
can only have one primary key. Similar to variables, each field has a particular data type. In this table, id and age
are of the type INTEGER, and name and favorite food are of the type TEXT. There are also other SQL data types,
such as BLOB (binary data), NULL (no value), REAL (floating-point value), DATETIME (dates and times), and
NUMERIC (any kind of number).

Say we also wanted to store the number of calories of these favorite foods. Instead of recreating my table to
have an additional field, we can create a new database that stores a list of foods with their corresponding calorie
count. Since these tables have the same foods on them, the information from both tables can be linked together.
Databases work with programs, but they are separate files from your code. For this reason, databases are per-
sistent: any changes made to the database remain after the program exits.

id name age favorite food

1 Elphie 2 vanilla ice cream

2 Milo 6 duck dog treat

3 Mochi 3 mochi

SQL
Structured Query Language, or SQL, is the standard language for managing, or “talking” with, a database. Using
SQL, we can request, search, and filter data from our database. Take a look at these common commands for
manipulating databases:

CREATE TABLE ‘dogs’ (‘id’ INTEGER PRIMARY KEY AUTOINCRE-
MENT NOT NULL, ‘name’ TEXT, ‘age’ INTEGER, ‘favorite food’
TEXT)

This creates a table named dogs with specified fields and data
types. The id is set to be the primary key and is automatically
created when a new record is inserted. This way, we will never
have a record with no id and no ids will ever repeat.

INSERT INTO “dogs” (“name”, “age”, “favorite food”)
VALUES (“Willow”, 4, “watermelon”)

The INSERT command inputs data for a new record, specify-
ing field names and their corresponding values. Because we
set id to be autoincremented, we don’t have to worry about
assigning it ourselves.

SELECT * FROM “dogs”
The asterisk (*) means all in SQL. This al-
lows us to select all records from dogs.

UPDATE “dogs” SET “age” = 2
WHERE id = 4

This updates the name of the record with
the id 4. The primary key comes in handy
whenever we need to retrieve a particular
record.

DELETE FROM “dogs” WHERE id = 4
Delete the record at id 4

Selection Sort

Key Terms

• selection sort
• array
• pseudocode

Overview
Sorted arrays are typically easier to search than unsorted arrays. One algorithm to sort
is bubble sort. Intuitively, it seemed that there were lots of swaps involved; but perhaps
there is another way? Selection sort is another sorting algorithm that minimizes the
amount of swaps made (at least compared to bubble sort). Like any optimization, ev-
erything comes at a cost. While this algorithm may not have to make as many swaps, it
does increase the amount of comparing required to sort a single element.

Implementation
Selection sort works by splitting the array into two parts: a
sorted array and an unsorted array. If we are given an array
of the numbers 5, 1, 6, 2, 4, and 3 and we wanted to sort it
using selection sort, our pseudocode might look something
like this:

repeat for the amount of elements in the array
� º������������������������������
� �������������������������º������������������

When this is implemented on the example array, the pro-
gram would start at array[0] (which is 5). We would then
compare every number to its right (1, 6, 2, 4, and 3), to find
the smallest element. Finding that 1 is the smallest, it gets
swapped with the element at the current position. Now 1 is
in the sorted part of the array and 5, 6, 2, 4, and 3 are still
unsorted. Next is array[1], 5 is our current element and
we need to check all elements to the right to check for the
smallest (note that by only checking to the right we are only
looking at the unsored array). Finding that 2 is the smallest
element of the unsorted array we swap it with 5, and so on.

Notice that in the second-to-last iteration, we can clearly see
that the array is now sorted, but a computer cannot look at
the larger picture like we can. It can only process the infor-
mation directly in front of it, and so therefore, we continue
the process. Once 5 is recognized as the smallest element of
the unsorted array, only then can the algorithm be stopped,
since the “unsorted” array is of size one and any list of size 1
is necessarily sorted.

This is CS50.© 2018

Sorted Arrays
Unlike bubble sort, it is not necessary to keep a counter of how many swaps were made. To optimize this algo-
rithm, it might seem like a good idea to check if the entire array is sorted after every successful swap to avoid
what happened in the last two steps of the pseudocode above. This process too, comes at a cost, that is even
more comparisons that we have to make. We are guaranteed though, that no matter the order of the original ar-
ray, a sorted array can be formed after n-1 swaps, which is significantly fewer than that of bubble sort. In selection
sort, in the worst case scenario, n2 comparions and n-1 swaps are made. Unfortunately, that’s also the case in the
best-case scenario!

CS50

61 42 35

61 42 35

62 45 31

Step-by-step process for
selection sort

32 45 61

32 54 61

32 54 61

Typecasting

Key Terms

• typecasting
• explicit
 typecasting
• implicit
 typecasting

Overview
Recall that C has several different data types, including ints, »���s, and ����s. It may
sometimes be necessary to convert variables from one data type to another data type.
C allows us to do this via typecasting (or just "casting"). Typecasting allows you to cast
data from one type to another type which is equally or less precise, but you cannot
cast data from a type that is less precise to a type that is more precise.

Chars and Ints
The ASCII standard, as you may recall, gives every letter a unique
number to identify it: capital A is represented by the number 65,
capital B by 66, and so on. Using typecasting, we can convert be-
tween integer values and ���� values.

Say, for instance, that we assigned an integer variable x to hold the
value 65. If we were to print the variable out on the screen (like on
line 6 of the code to the left), then it would display the number 65
to the console.

On line 7, however, we've included a placeholder for a ���� instead
of an int (as denoted by the %c symbol). We're still passing in x
as an argument, but the code first casts x into a ����. This is done
by writing ſ����ƀ in parentheses before the name of the variable.
Placing a new type name in front of an existing variable to evaluate
the variable as a different type is called explicitly typecasting: we
are directly providing instructions to convert types.

This is CS50.© 2018

Ints and Floats
Typecasting is also valuable for converting between floating-point
numbers and integers. Take the example at right. On line 6, we might
want b to store the value of 28 divided by 5, which is 2.4. But line 6
actually sets b to be 2.0. This is because the compiler sees a divi-
sion between two ints, and thus presents the answer as an int, even
though we're storing the value inside of a »���. To get around this, we
can first explicitly cast � to be a float, and then perform the division,
as is done on line 7. In this case, c now correctly equals 2.4.

Implicit typecasting can also be valuable when dealing with ints and
»���s. Since ints do not store digits past the decimal point, type-
casting a »��� to an int is an easy way to truncate a number into an
integer. On line 10 to the right, when we try to assign an int to be the
floating-point value d, d is implicitly cast to be an int, getting rid of
everything after the decimal point. The value of e is now 28.

65 A

66 B

67 C

ɨ��ɤ��������ʳ�����Ŝ�ʴ
2
ɪ����������ſ����ƀ
4 {
5 int x = 65;
ɭ������������ſɑʩ�Ɏ�ɑř��ƀŚ�ŵŵ�ɭɬ
ɮ������������ſɑʩ�Ɏ�ɑř�ſ����ƀ��ƀŚ�ŵŵ��
6 }

While explicit typecasting in this situation is good practice from a style perspective (so that people reading
your code can better understand what's happening), it's not actually necessary. If we were to exclude the
ſ����ƀ symbol from before the x in line 7 of the above code, the code will still print out the letter � (the ASCII
mapping of the value 65). Since we've included a placeholder for a ����, the compiler is expecting a ���� to be
passed in. If we pass an int in, the compiler will automatically try to interpret the value as a ���� instead. This
is called implicit typecasting.

�ɨ��ɤ��������ʳ�����Ŝ�ʴ
 2
�ɪ����������ſ����ƀ
 4 {
�ɬ������������ʰ�ɩɯŚ
�ɭ������»������ʰ���ŵ�ɬŚ
�ɮ������»������ʰ�ſ»���ƀ���ŵ�ɬŚ
 8
�ɰ������»������ʰ�ɩɯŜɬɩɪŚ
10 int e = d;
11 }

CS50

This is CS50.© 2018

Key Terms

• trust model
• backdoor

Overview
Downloading a piece of software from the Internet requires a substantial amount of
trust on part of the user. The user must trust that the piece of software that is being
downloaded doesn’t contain malicious code. In theory, any software downloaded onto
a computer could delete all of the files on that computer. Yet, we still trust that the
software we download is safe and secure. This is the basis of trust models.

Backdoors
To the right is an excerpt of a hypothetical login program
written in C, which checks a username and password
to determine whether a user's account credentials are
valid. In reality, login programs would probably compare
the user’s inputs against username and password values
stored in a database. Furthermore, these would most
likely be encrypted in some way and not just stored as
plain text. Still, we’ll use this simplified version for the
sake of example.

Notice that after performing the initial check for us-
ername and password combinations, the code offers
an additional way to gain access to the system (by
using the username "hacker" and the password "LOLi-
hackedyou"). This method of accessing a system through
an alternate means, one that differs from the way that
users are supposed to access a system, is known as a
backdoor.

In this case, any users who were to read the code of the login program would be able to identify the fact that
there's a backdoor into the system. However, users who download software usually won’t have the opportunity
to see the code of a program before it's compiled.

if ((strcmp(username, "rob") == 0 &&
 strcmp(password, "thisiscs50") == 0) ||
 (strcmp(username, "tommy") == 0 &&
 strcmp(password, "i<3javascript") == 0))
{
 printf("Success!! You now have access.\n");
}
else if (strcmp(username, "hacker") == 0 &&
 strcmp(password, "LOLihackedyou") == 0)
{
 printf("Hacked!! You now have access.\n");
}
else
{
 printf("Invalid login.\n");
}

Exploits in a Compiler
Even if a user sees a program's code before they download it and determines that there doesn't seem to be any
malicious code or backdoors in the code, that doesn't necessarily mean that the program itself is secure. Com-
pilers, the program that translates source code into object code, can also be the source of exploit.

There are a couple ways that compilers can be used to exploit users. A compiler could, for instance, be pro-
grammed to take a perfectly benign login program and inject code into it that creates a backdoor. Anyone who
looked at the source of the login program code itself wouldn't detect any signs of a backdoor. But if the source
code were compiled with the malicious compiler, then the resulting program would have the backdoor in it. Of
course, in this case, anyone who were to look at the source code of the compiler would see that there was code
in the compiler that injects malicious code into the login program.

Let’s take this one step further. Imagine that we wrote a compiler that injected malicious code into the compiler
itself (remember that compilers themselves need to be compiled). Then a hacker could theoretically take benign
source code for a compiler and turn it into a malicious compiler. In this case, even if the compiler source files and
the login program source files didn’t contain any malicious code or backdoors, compiling the source files could
still result in the injection of malicious code.

CS50 Trust Models

Transistors and Logic

Key Terms

• transistor
• semiconductor
• true
• false
• Boolean logic

Overview
Computers represent and process 1s and 0s using sequences of physical components
called transistors. By linking different configurations of these transistors, computers
can perform everything from basic arithmetic to playing a video. However, thanks to
layers of abstraction, we don’t need to constantly think about at the level of binary
and transistors to program a computer. Sequences of transistors can be represented
by Boolean logic, and these sequences of logic gates can then be packaged into chips
(hardware) and code (software).

Transistors
Transistors are small hardware devices made of semiconduc-
tors that act as switches for electric current. Because transis-
tors are made of semiconductors, transistors can behave as
both insulators (materials that inhibit electron flow) and con-
ductors (materials that enable electron flow). When a small
current is provided into a transistor’s gate, the gate “opens”
and current can flow from the source to the sink. When no
current is available at the gate, the gate “closes” and current
cannot flow from the source to the sink. By controlling cur-
rent flowing into the gate, transistors can manipulate how
current flows and therefore which signals are sent.

This is CS50.© 2018

Boolean Logic

CS50

Since transistors either enable or disable the flow of electricity, we can use transistors to represent the binary
values 1 and 0, or true and false. By linking these transistors in complicated webs, we can implement complex
processes using a branch of math known as Boolean logic, created by the mathematician George Boole.

Boolean logic is built upon the two Boolean values, true and false, and the fundamental operators AND, OR, and
NOT. Similar to arithmetic operations, these operations take value(s) as input and output one value. For example,
in the statement 2 + 3 = 5, 2 and 3 are our inputs, + is our operator, and 5 is our output. Boolean logic looks very
similar. In the statement “true AND false = false,” true and false are our inputs, AND is our operator, and false is
our output. The trick here is that while you know what the + sign does, you may not be familiar with the rules
of Boolean operators. Luckily, they operate similarly to how these words are used in English. The AND operator
requires that the first and second input are true to output true. Otherwise, it returns false. For example, the state-
ment “the shirt is green AND striped” is only true if the shirt is both green and striped. The OR operator requires
that either the first or second input is true for it to return true. The statement “the shirt is green OR striped” is
true for a green shirt, a striped shirt, and a green
striped shirt, but not true for any other shirt. The
NOT operator, like a negative sign, only takes in
one value and simply flips it, changing true to
false and vice versa. The negation of the state-
ment “the shirt is green AND striped” would be
“the shirt is NOT green OR NOT striped.”

By combining these fundamental operators in
sequences, we can build gates like NAND (not
and), NOR (not or), and XOR (exclusive or), and
then eventually basic arithmetic, and then even
more complex operations like editing a photo.

if current
flows here...

gate

source

sink

....current
 can
 flow
 here

A B

true true true true false

true false false true false

false true false true true

false false false false true

This is CS50.© 2018

R

R

R

Key Terms

• protocol
• IP
• router
• IP Address
• packet
• TCP
• port

Overview
In order for computers to communicate across the Internet, they need a standard set
of rules—or protocols—to dictate how the communication should happen and how
the data should get from one place on the Internet to another. Without these standard
ways of communicating information, computers would not be able to guarantee that
the receiver would get the information or that the receiving computer would know
what to do with it. Two important protocols deal with this: the Transmission Control
Protocol—also known as TCP—and the Internet Protocol—or IP. These are often collec-
tively known as TCP/IP.

Internet Protocol
Recall that the Internet Protocol (IP) defines how information is transferred
from one computer to another. It is structured as a web of connected rout-
ers (labeled as “R” in the diagram to the left), which are devices that help
send information from one computer to another. Data will often need to
pass through multiple routers to get from the sender’s computer to its des-
tination. Each router is programmed with a set of instructions (stored in a
“routing table”) that determine the direction in which the data must be sent
so that it reaches its final destination.

IP Addresses
Just as homes need addresses so that mail can be delivered from one house to another, computers need ad-
dresses as well so that routers know where information is being sent from and where information should be sent
to. These addresses are known as IP Addresses, and they take the form #.#.#.#, where each # stands for a num-
ber in the range 0 to 255. When a user types a web address (like google.com) into their web browser, a Domain
Name System (DNS) server translates the web address to an IP address (like 172.217.0.46).

Transmission Control Protocol
Instead of sending all of the data that one computer wants
to send to another as one big packet, information on the
Internet is sent in smaller data packets. The Transmission
Control Protocol (TCP) is responsible for breaking up data
into ordered packets. Since there is no guarantee that data
packets will arrive at the destination at the same time, or
even in the correct order, TCP labels each packet with the
order it should go in. This way, the receiving computer can
reassemble the packets in the right order.

TCP can also ask for the retransmission of lost data pack-
ets. Additionally, it assigns data a port number that in-
dicates what type of internet service the data should be
used for. For instance, SMTP (email) uses port 25, while
HTTP (normal web browsing) uses port 80.

In summary, to get data across the Internet, TCP first
breaks it down into smaller packets. Then TCP labels each
packet with a port and packet number, IP tells the pack-
et its destination, and the data is transmitted via routers
which eventually direct the packet to its final destination.

Data to Transmit

Data
Packet

Data
Packet

Data
Packet

Data
Packet

Data
Packet

Data
Packet

25 / 1 of 3 25 / 2 of 3 25 / 3 of 3

Data is broken
into packets.

TCP adds port
and packet order.

IP adds destination
(and return)
address.

Data
Packet

Data
Packet

Data
Packet

25 / 1 of 3 25 / 2 of 3 25 / 3 of 3

192.231.28.53192.231.28.53192.231.28.53

CS50 TCP and IP

Unsolvable Problems
Key Terms

• unsolvable problems
• the halting problem
• heuristic

Overview
Today, it seems like computers have endless capabilities. But it turns out, there are
some things computers will never be able to do. Problems that computers cannot
definitively arrive at a solution for are called unsolvable problems.

The Halting Problem
Generally speaking, computers operate by taking input and producing
some output. But like any function, computers can only handle the inputs
they were designed to handle. Take for example a calculator. It can handle
inputs such as 3 + 8 and output 11, but it cannot sort an array of integers.
Similarly, if you have a sorting program, it will not be able to handle arith-
metic inputs.

The halting problem is the computability theory problem of determining
if a program will finish running, or “halt”, given a program and specific in-
put. To examine this problem, let’s imagine that we have a program, called
halt, that takes in a program and some inputs to that program and then
outputs whether or not the given program is going to get stuck. When
we pass in calc – a calculator program – and “3 + 5” – inputs to calc – to
halt, halt will print “not stuck,” but if we pass in calc and “sort 1, 5, 2, 4, 9,”
halt will print “stuck.” Although this theoretical program sounds simple
enough, it is proven that this program cannot exist.

Consider a program, x, that has three main functions: copy, halt, and
negate. Copy takes input and outputs two of whatever is inputted, halt
takes a program and inputs to the given program and outputs whether
the given program will get stuck or not. Negate takes halt’s output as its
input. If negate receives “stuck” it will return 0, and if negate receives “not
stuck,” it will get stuck.

Let’s use a simple case to understand how x works. If the program calc is
passed into x, copy will output 2 calcs, and halt will determine that calc
would get stuck with an input of calc because all it can do is arithmetic.
“Stuck” would then be passed into negate, and x would ultimately output 0. Now, let’s pass in the program x as
the input to x. Copy takes x and outputs two of them, then halt gets x with the input of x. From here there are
two cases: halt can output “stuck” or “not stuck.” If halt outputs “stuck,” then negate would return 0. This implies
that x given the input x does not get stuck, so halt is wrong. If halt outputs “not stuck,” then negate would get
stuck. This implies that x given the input x does get stuck, so halt is wrong again. Halt is wrong in both possible
cases, therefore by contradiction, a program like halt cannot exist. It is impossible for a program like halt to be
right 100% of the time using the same algorithm.

This is CS50.© 2018

Heuristics
We know that there cannot exist an algorithm that can, in a finite amount of time, tell us if a program will halt
or not. However, that doesn’t mean there aren’t ways to work around this logical impossibility. To develop good-
enough solutions to impossible or very difficult problems, computer scientists often use heuristics. Heuristics are
approaches to solving a problem that are not guaranteed to be completely correct, but that work well enough for
the matter at hand. For example, using Google Maps to estimate how long it will take to travel home is a heuristic.
While Google Map’s prediction may not ultimately be correct, it adequately fulfills its purpose – it’s good enough.
For the halting problem, a possible heuristic could be testing a program for up to 1,000,000,000 seconds and
then outputting whether or not the program gets stuck. Although it is plausible that the program could have
finished its calculation on the 1,000,000,001th second, chances are the program would not have terminated in a
practical amount of time, so for our case, we can deem it “stuck.”

CS50

x

halt

copy

negate

sample
input

sample
input

sample
input

“stuck”
or

“not stuck”

return 0 or
gets stuck

Virtual and Augmented Reality

Overview

This is CS50.© 2018

CS50

Virtual and Augmented Reality
Virtual reality, or VR, refers to the field of technology that creates computer-generated environments and
experiences that people can interact with as they would in real life. To do this, software and hardware technol-
ogies have to work together to appeal to all human senses in efforts to perfectly replicate how humans register
their surroundings. In other words, technologies have to completely immerse the user in a virtual world; the
user should be able to naturally interact with the world and the world should convincingly respond to the user’s
actions. By appealing to sight, sound, touch and less obvious senses like balance, virtual reality aims to minimize
the user’s awareness of the artificiality of the world. For example, in appealing to sight, virtual reality technol-
ogies have to take into account our peripheral vision, providing nearly 180° of graphics. Human physiology is
central to the development of virtual reality technologies.

Augmented reality, or AR, is very similar to VR. However, instead of completely recreating a virtual realistic
world, AR builds upon input from real life. AR often overlays some kind of visual information (graphics, text, etc)
over a camera feed. Whereas VR can be used to create fantastical worlds, AR aims to enhance the experience of
reality, connecting real life with resources and information of the virtual world.

Applications
VR and AR are being used in many fields today and will surely continue to expand their impact. VR and AR is
perhaps most visible in the field of entertainment: many video games and films now take advantage of VR and
AR, creating experiences of unparalleled engagement. VR and AR are also used often in education for profes-
sions in which realistic training can be risky or costly. This includes flight simulators for pilots and surgery simu-
lators for doctors. Beyond professional training, VR and AR are used in treatments for psychological conditions
like PTSD. VR and AR can also be used creatively. For example, they are used in architecture to create more
realistic models and designs.

The cost of VR and AR technologies today remains quite high, however, as the cost is driven down, many predict
that VR and AR will have a greater presence in our everyday lives. By hoping to unify technology more closely
than ever with our experiences, VR and AR are revolutionary in their ability to humanize technology. As technol-
ogy develops, the possibilities of VR and AR can only expand.

Technologies
Creating immersive and interactive experiences requires new hardware devices and software technologies.
Depending on the intended level of immersion, various types of hardware will be used. On a most basic level, as
with all computers, the user needs some kind of output device to receive information about the virtual world and
some kind of input device to interact with it. The most common VR device is some kind of headset that fits like a
large pair of goggles. These headsets usually contain sensors to track a user’s motions, lenses to reproduce how
we see the world, and two display screens (one per eye). Along with a headset, VR may use input devices like
joysticks and hand controllers to add haptic, or touch, interactions. VR and AR can also be used in more easily
accessible devices such as smartphones and a headset with just a pair of lenses. On the software side, there are
many JavaScript frameworks for programming VR and AR experiences. Additionally, Unity is a popular tool for
creating 3D games and experiences.

Key Terms

• virtual reality
• augmented

reality
• headset

It seems like virtual and augmented reality are talked about all the time as the future of
technology these days. As the field grows and develops, we are led to wonder how VR
and AR can change our world. What would happen if we can create thoroughly con-
vincing versions of reality? Will VR and AR replace non-virtual interactions? For now,
let’s learn about how these technologies work, their technical challenges, and what we
can do with them now.

Version Control and Collaboration

Key Terms

• abstraction
• documentation
• comments
• Git
• commit

Overview
Collaboration is an integral part of computer science; part of programming is constant-
ly sharing and collaborating with peers. Sites like Facebook and Google are not written
by one person. Rather, they require thousands of engineers, all working in teams to
build specific pieces of the site. Furthermore, one team might rely on the code of many
other teams. Effective collaboration is crucial.

Abstraction
The saying “too many cooks spoil the broth” alludes to the idea that too many people working on the same
thing is counter-productive. In cooking, like in programming, one can largely avoid this issue through abstrac-
tion, by building large projects out of a set of smaller, self-contained sub-projects and assigning these sub-proj-
ects to different people.

In a restaurant, for instance, one person might make the appetizer, another might make the main course or
dessert, and still another might wait the table. In code, a project might rely on many individual programs, with
programs’ functions calling on still more library functions. The harmony that arises from the working together of
many distinct parts is truly a beautiful thing!

This is CS50.© 2018

CS50

Documentation and Comments
If abstraction requires breaking projects into smaller, independent pieces, documentation and comments allow
engineers – and readers, more generally – to fit the pieces together. The man pages are one example of doc-
umentation: to use the library function strlen() from string.h, one shouldn’t need to look at its actual code.
Instead, the library’s documentation acts as an executive summary, describing how and when to use a product,
in this case strlen().

There are cases in which looking at original code is useful or necessary. For these, comments in the code ex-
plaining what it does are incredibly important. These can make debugging one’s own code or that of others
much easier. Similarly, if we wanted to create a slightly different product based on someone else’s code, clear
and comprehensive comments would also be valuable. To promote consistency and clarity, best practices often
instruct the use of a common style within a project or an organization.

Version Control and Git
There are many tools that enable coding collaboration, the most popular of which is a file tracking system called
Git. The Git workflow is divided into three stages. First, we work on files in our working directory. Then, we pick
what changes we want to store and add those to our staging area (also known as index). Finally, we commit
those changes, which means that a “snapshot” of our project is stored in our repository (.git directory). Git also
features branches – copies of a master project – that allow programmers to experiment with changes without
actually affecting the original project.

Many version control systems save data as
changes relative to the original files. Git works
differently by saving “snapshots” of the entire
project every time we commit. The diagram at
right shows these “snapshots,” or versions, over
time. So version 2 represents our repository
after our first commit. From this “snapshot,” we
can see we only made changes to files B and C.
When files have not changed, Git links back to
the previous file commit. That’s denoted here
with a lighter gray color, as is the case with file
A in version 2.

version 1 version 2 version 3 version 4

A A A1 A1

B B1 B2 B3

C C1 C1 C1

“snapshots” over time

fi
le

 c
o

m
m

it
s

Variables

Key Terms

• variables
• declaration
• type
• integer

Overview
A variable is a storage container for data that is capable of holding different values
that may change or update as programs execute. Your program can read the contents
of a variable, update the contents of a variable, and display the value of a variable on
the screen. Computer programs can use variables in order to remember useful informa-
tion that the programs can then use later in the code.

Declaring and Setting Variables
The first step to using a variable in C is to let your program know that
you want the variable to exist. This step is called the variable's declara-
tion (also known as initialization). In C, this is done by first specifying the
variable's type, which tells the program what kind of information will be
stored inside of the variable, and then by specifying the variable's name
(followed by a semicolon to end the programming statement).

For instance, in line 1 to the left, we've declared a new variable of type
int to be named count. An int is a data type which stores an integer,
which could be positive whole numbers, negative whole numbers, or
zero (but not fractions or decimals). Currently, no value has been as-
signed to count: we've just told the program to create a space within
which values can be stored later.

This is CS50.© 2018

Variables from User Input
In many cases, a program may need to take input from the
user and store the input as a variable. CS50 has written sev-
eral functions (declared in a file called cs50.h) that serve this
very purpose.

For instance, get_int("prompt_string") prompts the user to
input an integer. In the program to the right, line 6 uses get_
int() to take in an integer as input from the user with the
prompt "Integer please:", and saves that integer in a variable
called i.

1 int count;
count

2 count = 2;
count

2

3 count = 8;
count

8

4 int x = count;
x

8

Once a variable has been declared, it can be manipulated in various ways. Line 2 takes the variable count and as-
signs its value to be 2. Now, the number 2 is stored inside of the variable count. Optionally, we could have com-
bined lines 1 and 2 into a single programming statement to declare a variable and set its value at the same time,
via a line of code such as: int count = 2;.

After a variable has been given a value, its value can be updated. Line 3 updates the value of count again, this
time to be 8. Now, count forgets the number 2 and remembers the number 8 instead.

The value of a variable can be accessed just by using its name. For instance, line 4 declares a new variable (also
of type int) this time named x, and initially sets its value to be count. This tells your program to go to the count
variable, see what value is inside, and set the value of x to be that value. Since the current value of count is 8, the
value of x is set to also be 8.

count

8

1 #include <cs50.h>
2 #include <stdio.h>
3
4 int main(void)
5 {
6 int i = get_int("Integer please: ");
7 printf("i is %i \n", i);
8 }

CS50

Line 7 then displays the value of the variable on the screen. The %i in the string is a special syntax which acts as
a placeholder for an integer. We tell printf what integer to use in that placeholder by passing it an additional
argument, where an argument is just a value inside of the parentheses of a function. Inside of the parentheses
next to printf we've included two arguments: the string "i is %i", and the integer i, which will take the place
of %i. If the user were to enter the number 28 as input on line 6, then line 7 would replace %i with the value of i
(which is 28) and display the string "i is 28" on the screen followed by a new line denoted by the \n.

