
Compiling

Key Terms

• compiling
• machine code
• preprocessing
• assembly
• object code
• linking

Overview
Compiling is the process of translating source code, which is the code that you write in 
a programming language like C, and translating it into machine code: the sequence of 
0s and 1s that a computer's central processing unit (CPU) can understand as instruc-
tions for how to execute the program. Although the command make is used to compile 
code, make itself is not a compiler. Instead, make calls upon the underlying compiler 
clang in order to compile C source code into object code.

This is CS50.© 2018

Linking
If a program has multiple files that need to be combined into a single machine code file (such as if a program 
includes multiple files or libraries like math.h or cs50.h), then one final step is required in the compilation process: 
linking. The linker takes multiple different object code files, and combines them into a single machine code file 
that can be executed. For example, linking the CS50 Library during compilation is how the resulting object code 
knows how to execute functions like get_int() or get_string(). It is important to note that only one file can have 
a main function so that the program knows where to begin. 

Source Code

Preprocessed
Source Code

Assembly

Object Code

Preprocessing

Compiling

Assembling

Linking

Machine Code

Preprocessing
The entire compilation process can be broken down into four steps. The first 
step is preprocessing, performed by a program called the preprocessor. 
Any source code in C that begins with a # is a signal to the preprocessor to 
perform some action.
For example, #include tells the preprocessor to literally include the contents 
of a different file in the preprocessed file. When a program includes a line like 
#include <stdio.h> in the source code, the preprocessor generates a new 
file (still in C, and still considered source code), but with the #include line 
replaced by the entire contents of stdio.h.

Compiling
After the preprocessor produces preprocessed source code, the next step 
is to compile (using a program called a compiler) C code into a lower-level 
programming language known as assembly.
Assembly has far fewer different types of operations than C does, but by 
using them in conjunction, can still perform the same tasks that C can. By 
translating C code into assembly code, the compiler takes a program and 
brings it much closer to a language that a computer can actually under-
stand. The term "compiling" can refer to the entire process of translating 
source code to object code, but it can also be used to refer to this specific 
step of the compilation process.

Assembling
Once source code has been translated into assembly code, the next step is 
to turn the assembly code into object code. This translation is done with a 
program called the assembler. 
Object code is essentially machine code with some non-machine code 
symbols. If there's only one file that needs to be compiled from source code 
to machine code, the compilation process is over now. However, if there are 
multiple files to be compiled, a file's object code only represents part of the 
program and an additional step is required. The object code file's non-ma-
chine code symbols denote how the file fits with the other parts of the pro-
gram. The entire program is put together in a process called linking.

CS50


