
Linear Search

Key Terms

• algorithm
• linear search
• element
• computational

complexity
• constant

Overview
There are many different algorithms that can be used to search through a given list.
One such algorithm is called linear search. This algorithm works by simply checking
every element in the list in order. It will start at the beginning of the list and increment
through the list until the desired element is found. In this way, linear search would
require checking every element before reaching the conclusion that the element does
not exist in the list.

Efficiencies and Inefficiencies
While the linear search algorithm is correct, it is
almost never the most efficient. The worst, or least
efficient, case would be when the desired element
is the last element in the list or not in the list at all
(both have the same efficiency). We would have
to look through every element in the list to find
the one we’re looking for. This would take n steps,
where n is the length of the list. The computational
complexity of linear search would be O(n). That
may seem pretty daunting, especially if we have a
list that has millions of elements. However, the best
case scenario is much better; if the desired element
is the first in the list, we would find it in one step.
Although linear search is not usually the most ef-
ficient, linear search can be useful in certain situa-
tions. Take for instance a list that you know nothing
about, like a stack of papers that are out of order.
It is just as efficient to search this stack linearly as
it would be to search for elements randomly. In
this case, we cannot search for elements in a more
efficient way since we don’t know anything about
the list. There is no information about the list’s orga-
nization for us to leverage. Now you can see why it
would seem rather convenient to sort a list before
searching it. Granted, sorting also takes up time and
space, but this additional step will save you some
time if you plan on searching a list multiple times or
if you have a very large list.

This is CS50.© 2018

Examples of Linear Search

CS50

Recall the phone book example. While looking for Mike Smith, linear search meant going through each page
of the phone book one at a time. Even the algorithm where we flipped through two pages at a time can be
considered linear. In fact, any algorithm in which the there is a constant being multiplied by the total num-
ber of elements in the list to determine the search time, is considered linear. For example, if you are turning
three pages of the phone book at a time (remembering to make the correction if you overshoot), the search
time would be n/3. Since 1/3 is being multiplied to n, this algorithm would be considered linear. Linear search
should typically be avoided, as there is usually a better algorithm that can implemented to make the search
more efficient. Sorting a list first, is one such way to search more quickly. Once a list is sorted we are able to
leverage some of the concepts learned earlier to make a faster, efficient, and more elegant program.

Search for
the

50

1

33

17

50

12

29

3
Found 50!

Not 50step 1:

Not 50step 2:

Not 50step 3:

Not 50step 4:

Not 50step 5:

step 6:

