
Selection Sort

Key Terms

• selection sort
• array
• pseudocode

Overview
Sorted arrays are typically easier to search than unsorted arrays. One algorithm to sort
is bubble sort. Intuitively, it seemed that there were lots of swaps involved; but perhaps
there is another way? Selection sort is another sorting algorithm that minimizes the
amount of swaps made (at least compared to bubble sort). Like any optimization, ev-
erything comes at a cost. While this algorithm may not have to make as many swaps, it
does increase the amount of comparing required to sort a single element.

Implementation
Selection sort works by splitting the array into two parts: a
sorted array and an unsorted array. If we are given an array
of the numbers 5, 1, 6, 2, 4, and 3 and we wanted to sort it
using selection sort, our pseudocode might look something
like this:

repeat for the amount of elements in the array
	 find	the	smallest	unsorted	value
	 swap	that	value	with	the	first	unsorted	value

When this is implemented on the example array, the pro-
gram would start at array[0] (which is 5). We would then
compare every number to its right (1, 6, 2, 4, and 3), to find
the smallest element. Finding that 1 is the smallest, it gets
swapped with the element at the current position. Now 1 is
in the sorted part of the array and 5, 6, 2, 4, and 3 are still
unsorted. Next is array[1], 5 is our current element and
we need to check all elements to the right to check for the
smallest (note that by only checking to the right we are only
looking at the unsored array). Finding that 2 is the smallest
element of the unsorted array we swap it with 5, and so on.

Notice that in the second-to-last iteration, we can clearly see
that the array is now sorted, but a computer cannot look at
the larger picture like we can. It can only process the infor-
mation directly in front of it, and so therefore, we continue
the process. Once 5 is recognized as the smallest element of
the unsorted array, only then can the algorithm be stopped,
since the “unsorted” array is of size one and any list of size 1
is necessarily sorted.

This is CS50.© 2018

Sorted Arrays
Unlike bubble sort, it is not necessary to keep a counter of how many swaps were made. To optimize this algo-
rithm, it might seem like a good idea to check if the entire array is sorted after every successful swap to avoid
what happened in the last two steps of the pseudocode above. This process too, comes at a cost, that is even
more comparisons that we have to make. We are guaranteed though, that no matter the order of the original ar-
ray, a sorted array can be formed after n-1 swaps, which is significantly fewer than that of bubble sort. In selection
sort, in the worst case scenario, n2 comparions and n-1 swaps are made. Unfortunately, that’s also the case in the
best-case scenario!

CS50

61 42 35

61 42 35

62 45 31

Step-by-step process for
selection sort

32 45 61

32 54 61

32 54 61

